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Basic Notation

The symbol � indicates the end of the proof.

The symbol := means “put by definition”.

R = (−∞,+∞) = the set of real numbers, R+ = [0,+∞).

Rd = d-dimensional Euclidean space.

Q = the set of rational numbers, Q+ = Q ∩ R+.

N = {1, 2, 3, . . . } = the set of natural numbers.

a ∨ b = max{a, b}, a ∧ b = min{a, b} for a, b ∈ R.

a+ = a ∨ 0, a− = (−a) ∨ 0 for a ∈ R.

lim
s�t

= lim
s→t, s<t

.

B = the indicator function of the set B.

E = expectation.

E(·|G ) = conditional expectation with respect to the σ-algebrs G .

F
∨

G = σ
(
F

⋃
G
)

= the smallest σ-algebra containing the σ-algebras F
and G .∨

α∈A Fα = σ
(⋃

α∈A Fα

)
= the smallest σ-algebra containing the σ-algebras

Fα, α ∈ A.



Preface

The arbitrage theory for general models of financial markets in continuous time is

based on the heavy use of the theory of martingales and stochastic integration (see

the monograph by Delbaen and Schchermayer [DEL 06]). Our book gives an

exposition of the foundations of modern theory of stochastic integration (with respect

to semimartingales. It follows traditions of the Strasbourg School of Stochastic

Processes. In particular, the exposition is inspired by the monograph by Dellacherie

[DEL 72]) in Chapter 1 and by the course by Meyer [MEY 76] in Chapters 2 and 3.

In Chapter 1, the so-called general theory of stochastic processes is developed. The

second chapter is devoted to detailed study of local martingales and processes with

finite variation. The theory of stochastic integration with respect to semimartingales

is a subject of Chapter 3. We do not consider vector stochastic integrals, for which

we refer to Shiryaev and Cherny [SHI 02]. The last section is devoted to

σ-martingales and the Ansel–Stricker theorem. Some results are given without

proofs. These include the section theorem, classical Doob’s theorems on martingales,

the Burkholder–Davis–Gundy inequality and Itô’s formula.

Our method of presentation may be considered as old-fashioned, compared to, for

example, the monograph by Protter [PRO 05], which begins with an introduction of

the notion of a semimartingale; in our book, semimartingales appear only in the final

chapter. However, the author’s experience based on the graduate courses taught at the

Department of Mechanics and Mathematics of Moscow State University, indicates

that our approach has some advantages.

The text is intended for a reader with a knowledge of measure-theoretic probability

and discrete-time martingales. Some information on less standard topics (theorems

on monotone classes, uniform integrability, conditional expectation for nonintegrable

random variables and functions of bounded variation) can be found in the Appendix.

The basic idea, which the author pursued when writing this book, was to provide

an affordable and detailed presentation of the foundations of the theory of stochastic
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integration, which the reader needs to know before reading more advanced literature

on the subject, such as Jacod [JAC 79], Jacod and Shiryaev [JAC 03], Liptser and

Shiryayev [LIP 89], or a literature dealing with applications, such as Delbaen and

Schchermayer [DEL 06].

The text is accompanied by more than a hundred exercises. Almost all of them are

simple or are supplied with hints. Many exercises extend the text and are used later.

The work on this book was partially supported by the International Laboratory

of Quantitative Finance, National Research University Higher School of Economics

and Russian Federation Government (grant no. 14.A12.31.0007). I wish to express

my sincere thanks to Tatiana Belkina for a significant and invaluable assistance in

preparing the manuscript.

Alexander GUSHCHIN

Moscow, May 2015
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1

General Theory of Stochastic Processes

1.1. Stochastic basis and stochastic processes

To describe the dynamics of random phenomena in time, the notion of a stochastic

basis is used in stochastic calculus.

DEFINITION 1.1.– A filtration on a measurable space (Ω,F ) is a nondecreasing

family F = (Ft)t∈R+ of sub-σ-algebras of the σ-algebra F : Fs ⊆ Ft ⊆ F for all

s < t, s, t ∈ R+. A stochastic basis is a probability space equipped with a filtration,

i.e. a stochastic basis is a quadruplet B = (Ω,F ,F,P), where (Ω,F ,P) is a

probability space and F is a filtration on (Ω,F ).

If a discrete filtration is given, i.e. a nondecreasing family of sub-σ-algebras F0 ⊆
F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F , then it can be extended to a filtration in the sense of

definition 1.1 in a natural way. Namely, put Ft := F[t], where [·] is the integer part

of a number.

If F = (Ft)t∈R+ is a filtration, then define

Ft+ :=
⋂

s : s>t

Fs, t ∈ R+,

Ft− :=
∨

s : s<t

Fs, t ∈ (0,∞].

Put also F0− := F0, F∞ := F∞−.

Ft (respectively Ft−) is usually interpreted as the class of events occurring before

or at time t (respectively strictly before t).
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DEFINITION 1.2.– A stochastic basis B = (Ω,F ,F,P) is called right-continuous if

the filtration F = (Ft)t∈R+ is right-continuous, i.e. Ft = Ft+ for every t ∈ R+. A

stochastic basis B = (Ω,F ,F,P) is called complete if the σ-algebra F is complete

(relative to P) and the σ-algebra F0 contains all sets of measure 0 from F . We say

that a stochastic basis B = (Ω,F ,F,P) satisfies the usual conditions if it is right-

continuous and complete.

Recall that a σ-algebra F is complete relative to P if A ∈ F , P(A) = 0, B ⊆ A
imply B ∈ F .

The condition that a stochastic basis is right-continuous is essentially necessary

for the development of the theory. The completeness property of a stochastic basis is

much less significant. Statements that are proved for a complete stochastic basis either

remain valid without the completeness or need a little correction. On the other hand,

the completeness property is very undesirable, especially in the statistics of stochastic

processes, as it is not preserved under a change of measure to a non-equivalent one.

Nevertheless, in this book, we will always assume, unless otherwise stated, that a

stochastic basis satisfies the usual conditions.

EXAMPLE 1.1.– Let Ω = D(R) be the space of functions ω : R+ � R which are

right-continuous at every t ∈ R+ and have finite left-hand limits at every t ∈ ]0,∞[,
or Ω = C(R) is the space of continuous functions ω : R+ � R. Define mappings

Xt : Ω → R, t ∈ R+, by Xt(ω) = ω(t). Define the σ-algebra F 0
t , t ∈ R+, on Ω as

the smallest σ-algebra with respect to which all mappings Xs, s � t, are measurable.

Finally, put F = F 0
∞. It is obvious that F0 = (F 0

t )t∈R+ is a filtration on (Ω,F ).
X = (Xt)t∈R+ is said to be the canonical stochastic process on Ω.

EXERCISE 1.1.– Show that the filtration F0 in example 1.1 is not right-continuous.

If a stochastic basis does not satisfy the usual conditions, then there is a “minimal”

extension of it to a stochastic basis satisfying the usual conditions. The corresponding

construction is given in the following exercises.

EXERCISE 1.2.– Let B = (Ω,F ,F = (Ft)t∈R+ ,P) be a stochastic basis. Put

F+ = (Ft+)t∈R+ . Show that B+ := (Ω,F ,F+,P) is a right-continuous stochastic

basis.

EXERCISE 1.3.– Let B = (Ω,F ,F = (Ft)t∈R+ ,P) be a stochastic basis. Put N :=
{B ⊆ Ω: B ⊆ A for some A ∈ F with P(A) = 0}, FP := {A	B : A ∈ F , B ∈
N }, FP

t := {A	B : A ∈ Ft, B ∈ N }, t ∈ R+. Show that FP and FP
t are σ-

algebras. For C ∈ FP, put P(C) := P(A) if C has a form C = A	B, A ∈ F ,

B ∈ N . Show that P is well defined. Show that P is a probability on (Ω,FP), whose

restriction onto F is P. Show that BP := (Ω,FP,FP,P), where FP := (FP
t )t∈R+ ,

is a complete stochastic basis.
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EXERCISE 1.4.– Let B = (Ω,F ,F = (Ft)t∈R+ ,P) be a stochastic basis. Show that(
B+

)P
=
(
BP

)+
.

REMARK 1.1.– It often happens that the stochastic basis BP is right-continuous. For

instance, in example 1.1, this is the case if the measure P on (Ω,F ) is such that the

canonical process X is a Lévy process (in particular, if X is a Wiener or a Poisson

process).

Let B = (Ω,F ,F = (Ft)t∈R+ ,P) be a stochastic basis satisfying the usual

conditions. A stochastic process with values in a measurable space (E, E ) is a family

X = (Xt)t∈R+ of measurable mappings Xt from (Ω,F ) to (E,E ). We usually

indicate the range E of values of a stochastic process, assuming implicitly that a

topology is given on E and E is the σ-algebra B(E) of Borel sets, i.e. the σ-algebra

generated by open sets. If E = Rd, then it is assumed that the topology corresponds

to the Euclidean metric. The extended real line [−∞,+∞] is assumed to be equipped

with the natural topology as well. We do not usually indicate the range of values of a

stochastic process, which means that it takes real values, i.e. E = R. It is obvious

that a stochastic process X with values in Rd is a set (X1, . . . , Xd) of d real-valued

stochastic processes.

Essentially, a stochastic process X is a function of two variables: ω and t. To

emphasize this fact, the value of X at outcome ω and at time t will be denoted not only

by Xt(ω) but also by X(ω, t). In what follows, measurability properties of stochastic

processes as functions of two variables, i.e. mappings from the space Ω×R+ equipped

with some σ-algebra, to E, play an important role.

A set B ⊆ Ω× R+ is said to be a random set if B is a stochastic process.

The trajectory of a stochastic process X , corresponding to outcome ω, is the

mapping t � X(ω, t) from R+ to E.

A process X with values in a topological space E is called continuous (or

right-continuous, or left-continuous, or right-continuous with left-hand limits) if all
its trajectories are continuous (respectively right-continuous, or left-continuous, or

right-continuous and have left-hand limits for every t > 0). To avoid

misunderstanding, we emphasize that left-hand limits must belong to E. Thus, if

E = R, a right-continuous process with left-hand limits must have a finite limit from

the left for every t > 0. For a right-continuous process with left-hand limits, we use

the French abbreviation càdlàg (continue à droite avec des limites à gauche, i.e.

right-continuous with left-hand limits).

Linear operations on stochastic processes with values in a linear space E are

understood pointwise.
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If a process X with values in a linear topological space E is càdlàg, then we define

two new stochastic processes X− = (Xt−)t∈R+ and ΔX = (ΔXt)t∈R+ with values

in E by

X0− = X0, Xt− = lim
s�t

Xs, t > 0,

ΔX = X −X−.

Note that ΔX0 = 0, according to this definition.

Let X be a real-valued right-continuous stochastic process. Assume that

limt→∞ Xt(ω) exists (respectively exists and is finite) for almost all ω. In this case,

X∞ is understood as any mapping from Ω to [−∞,+∞] (respectively to R) such that

X∞(ω) = lim
t→∞Xt(ω) P-a.s.

It follows from the completeness of the stochastic basis that any such mapping

X∞ is an F∞-measurable random variable. We also put X∞− := X∞ under the

same assumptions.

EXERCISE 1.5.– Prove the assertion concerning the measurability of X∞ .

DEFINITION 1.3.– A stochastic process Y is called a modification of a stochastic

process X , if P(Yt 
= Xt) = 0 for every t ∈ R+.

DEFINITION 1.4.– Stochastic processes X and Y are called indistinguishable if

P{ω : there exists t ∈ R+ such that Xt(ω) 
= Yt(ω)} = 0.

We will also speak in this case that Y (respectively X) is a version of X
(respectively Y ).

A random set is called evanescent, if its indicator is indistinguishable with the

process which is identically zero.

Sometimes in the literature, the term “version” is used as a synonym of the term

“modification”.

It is assumed in the definition of indistinguishability that the corresponding set

belongs to the σ-algebra F . Let us note that, for measurable processes X and Y (see

definition 1.8 in section 1.3), the completeness of the σ-algebra F guarantees that this

set is measurable, see theorem 1.7.

It is clear that if two processes are indistinguishable, then they are modifications

of each other. The converse is generally not true.
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EXAMPLE 1.2.– Let Ω = [0, 1], F be the σ-algebra of Lebesgue measurable sets, and

let P be the Lebesgue measure on (Ω,F ). Put Xt(ω) = 0 for all ω and t,

Yt(ω) =

{
1, if t = ω,

0, if t 
= ω.

Then X and Y are modifications of each other, but they are not indistinguishable.

PROPOSITION 1.1.– If X and Y are right-continuous (or left-continuous), and Y is a

modification of X, then X and Y are indistinguishable.

PROOF.– For every rational r ∈ Q+, put Nr = {ω : Xr(ω) 
= Yr(ω)}, and let

N =
⋃

r∈Q+
Nr. Then P(N) = 0 because Y is a modification of X . However, for

ω ∈ Ω \N , trajectories of X·(ω) and Y·(ω) coincide in all rational points and, hence,

in all points due to the assumption of one-sided continuity. �

In this book, we will often encounter a situation where some stochastic processes

are constructed from other stochastic processes. Often the result of such a

construction is not a concrete stochastic process but any one in a class of

indistinguishable processes. The situation here is similar, say, to that occurs when

taking the conditional expectation, which is defined as any random variable from a

fixed equivalence class of random variables that coincide almost surely. Uniqueness

here could be achieved by considering the equivalence classes of indistinguishable

stochastic processes. However, this approach has its drawbacks, and its use, in our

opinion, would lead to a complication of terminology and notation. However, the

reader should keep in mind this circumstance and understand that, say, equalities or

inequalities hold for the equivalence classes of indistinguishable stochastic

processes; with regard to stochastic processes themselves, these relations are valid

only up to an evanescent set.

1.2. Stopping times

Throughout this section, we will assume that a right-continuous stochastic basis

B = (Ω,F ,F = (Ft)t∈R+ ,P) is given.

DEFINITION 1.5.– A stopping time is a mapping T : Ω → [0,∞] such that {T � t} ∈
Ft for every t ∈ R+.

It follows from the definition that a stopping time T is an extended (i.e. with values

in the extended real line) random variable.

EXAMPLE 1.3.– Let t ∈ [0,∞]. Put T (ω) ≡ t. Then T is a stopping time.

EXERCISE 1.6.– Let T be a stopping time. Prove that {T = ∞} ∈ F∞.
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EXERCISE 1.7.– Let T be a stopping time and t ∈ R+. Show that T + t is a stopping

time. Construct an example of a stopping time T � 1 such that T − ε is not a stopping

time for all ε > 0.

In the next two propositions, the right-continuity of the filtration is used.

PROPOSITION 1.2.– A mapping T : Ω → [0,∞] is a stopping time if and only if

{T < t} ∈ Ft for every t ∈ R+.

PROPOSITION 1.3.– Let T1, . . . , Tn, . . . be stopping times. Then supn Tn and infn Tn

are stopping times.

EXERCISE 1.8.– Prove propositions 1.2 and 1.3.

DEFINITION 1.6.– Let T be a stopping time. Denote by FT the following class of

sets:

FT := {A ∈ F∞ : A ∩ {T � t} ∈ Ft for every t ∈ R+}.
EXERCISE 1.9.– Prove that FT is a σ-algebra.

The σ-algebra FT is usually interpreted as the class of events occurring before

or at a random time T . FT should not be confused with the smallest σ-algebra, with

respect to which the mapping T is measurable. The latter, as a rule, is much more

narrow.

Sometimes in the literature, in the definition of FT , the assumption A ∈ F∞ is

replaced by A ∈ F . The difference between these definitions is not essential.

PROPOSITION 1.4.– Let T be a stopping time. If A ∈ FT , then

A ∩ {T < t} ∈ Ft for every t ∈ R+. [1.1]

Conversely, if A ∈ F∞ and [1.1] is valid, then A ∈ FT .

PROOF.– Let A ∈ FT , t ∈ R+. Then

A ∩ {T < t} =

∞⋃
k=1

(
A ∩ {T � t− 1/k}) ∈ Ft.

Conversely, let A ∈ F∞ and [1.1] be valid. Then, for any t ∈ R+, and for any

natural m,

A ∩ {T � t} =
∞⋂

k=m

(
A ∩ {T < t+ 1/k}) ∈ Ft+1/m,
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hence,

A ∩ {T � t} ∈
∞⋂

m=1

Ft+1/m = Ft

in view of the right-continuity of the filtration. �

THEOREM 1.1.– Let T and S be stopping times. Then:

1) if T ≡ t, t ∈ [0,∞], then FT = Ft;

2) the extended random variable T is FT -measurable;

3) if B ∈ FS , then B ∩ {S � T} ∈ FT ;

4) if S � T , then FS ⊆ FT ;

5) FS∧T = FS ∩ FT , FS∨T = FS

∨
FT ;

6) the sets {S < T}, {S = T} and {S > T} belong to FS ∩ FT .

PROOF.– The proof of (1) and (2) is left to the reader as an exercise. Let us prove (3).

We have, for every t ∈ R+,

B ∩ {S � T} ∩ {T � t} =
(
B ∩ {S � t}) ∩ {T � t} ∩ {S ∧ t � T ∧ t}.

Now note that B ∩ {S � t} ∈ Ft by the definition of FS , {T � t} ∈ Ft by the

definition of a stopping time, and {S ∧ t � T ∧ t} ∈ Ft, because S ∧ t and T ∧ t are

Ft-measurable (which follows from the definition of the stopping time).

Assertion (4) follows directly from (3).

The inclusion FS∧T ⊆ FS ∩FT follows from (4). Let B ∈ FS ∩FT . Then, for

t ∈ R+,

B ∩ {S ∧ T � t} = B ∩ ({S � t} ∪ {T � t})
=
(
B ∩ {S � t}) ∪ (

B ∩ {T � t}) ∈ Ft.

The inclusion FS

∨
FT ⊆ FS∨T follows from (4). Let B ∈ FS∨T . Then B ∩

{S � T} = B ∩ {S ∨ T � T} ∈ FT due to (3). Similarly, B ∩ {T � S} ∈ FS .

Therefore, B =
(
B ∩ {S � T}) ∪ (

B ∩ {T � S}) ∈ FS

∨
FT .

Since {S > T} = Ω\{S � T} ∈ FT due to (3) and {S = T} = {S � T}\{S >
T}, to prove (6), it is enough to check that {S � T} ∈ FT . But this follows from the

equality {S � T} = {S ∧ T = T} and FT -measurability of random variables S ∧ T
and T , see (2) and (4). �
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EXERCISE 1.10.– Prove assertions (1) and (2) of theorem 1.1.

Given a mapping T : Ω → [0,∞] and a set A ⊆ Ω, define a new mapping

TA : Ω → [0,∞] by

TA(ω) =

{
T (ω), if ω ∈ A,

∞, if ω 
∈ A.

PROPOSITION 1.5.– Let T be a stopping time, A ⊆ Ω. Then TA is a stopping time if

and only if A ∩ {T < ∞} ∈ FT . In particular, if A ∈ FT , then TA is a stopping

time.

PROOF.– The claim follows from

{TA � t} = A ∩ {T � t}, t ∈ R+. �

The stopping time TA is called the restriction of a stopping time T on the set A.

We associate another σ-algebra FT− with a stopping time T . Elements of FT−
are usually interpreted as events occurring strictly before a stopping time T .

DEFINITION 1.7.– Let T be a stopping time. Denote by FT− the smallest σ-algebra

containing the σ-algebra F0 and all sets of the form

A ∩ {t < T}, t ∈ R+, A ∈ Ft.

THEOREM 1.2.– Let T and S be stopping times. Then:

1) if T ≡ t, t ∈ [0,∞], then FT− = Ft−;

2) FT− ⊆ FT ;

3) the extended random variable T is FT−-measurable;

4) if S � T , then FS− ⊆ FT−;

5) if B ∈ FS , then B ∩ {S < T} ∈ FT−.

PROOF.– Assertion (1) follows directly from the definitions. Let us prove (2). Since

F0 ⊆ FT , it is enough to check that A∩{t < T} ∈ FT if t ∈ R+ and A ∈ Ft. Take

s ∈ R+ and show that A∩ {t < T � s} ∈ Fs. Indeed, this set is empty, if s � t; and

if s > t, then A ∈ Fs and {t < T � s} ∈ Fs.

To prove (3), it is enough to note that {t < T} ∈ FT− for every t ∈ R+.

Let t ∈ R+, A ∈ Ft, S � T . Then

B := A ∩ {t < S} ∈ Ft.
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Hence,

B = B ∩ {t < T} ∈ FT−,

and (4) follows.

Now we prove (5). Let B ∈ FS . We have

B ∩ {S < T} =
⋃

r∈Q+

(
B ∩ {S � r} ∩ {r < T}),

where the union is taken over a countable set of rational numbers r. By the definition

of FS , B ∩ {S � r} ∈ Fr. Hence, B ∩ {S � r} ∩ {r < T} ∈ FT−. The claim

follows. �

PROPOSITION 1.6.– If T is a stopping time and A ∈ F∞, then A∩{T = ∞} ∈ FT−.

PROOF.– It is easy to see that sets A with the indicated properties constitute a σ-

algebra. Therefore, it is enough to check the assertion if A ∈ Ft, t ∈ R+. But in this

case

A ∩ {T = ∞} =
∞⋂

n=1

(
A ∩ {t+ n < T}) ∈ FT−. �

LEMMA 1.1.– Let S and T be stopping times, S � T and S < T on the set {0 < T <
∞}. Then FS ⊆ FT−.

PROOF.– Let A ∈ FS . It follows from the hypotheses that

A =
(
A ∩ {T = 0}) ∪ (

A ∩ {S < T}) ∪ (
A ∩ {T = ∞}).

Since FS ⊆ FT by theorem 1.1 (4), we have A ∩ {T = 0} ∈ F0 ⊆ FT−.

Next, A ∩ {S < T} ∈ FT− by theorem 1.2 (5). Finally, A ∩ {T = ∞} ∈ FT− by

proposition 1.6. �

THEOREM 1.3.– Let (Tn) be a monotone sequence of stopping times and

T = limn Tn:

1) if (Tn) is an increasing sequence, then

FT− =

∞∨
n=1

FTn−;
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moreover, if {0 < T < ∞} ⊆ {Tn < T} for every n, then

FT− =
∞∨

n=1

FTn .

2) if (Tn) is a decreasing sequence, then

FT =

∞⋂
n=1

FTn ;

moreover, if {0 < T < ∞} ⊆ {T < Tn} for every n, then

FT =

∞⋂
n=1

FTn−.

PROOF.–

1) by theorem 1.2 (4), FT− ⊇ ∨∞
n=1 FTn−. To prove the converse inclusion,

it is enough to show that all elements that generate the σ-algebra FT− belong to∨∞
n=1 FTn−. This is obvious for sets from F0. Let A ∈ Ft, t ∈ R+. Then

A ∩ {t < T} =

∞⋃
n=1

(
A ∩ {t < Tn}

) ∈ ∞∨
n=1

FTn−,

because A ∩ {t < Tn} ∈ FTn−.

The second part of the assertion follows from the first one and lemma 1.1;

2) by theorem 1.1 (4), FT ⊆ ⋂∞
n=1 FTn . Let A ∈ ⋂∞

n=1 FTn . Fix t ∈ R+. Then,

for every n, A ∩ {Tn < t} ∈ Ft by proposition 1.4, hence,

A ∩ {T < t} =

∞⋃
n=1

(
A ∩ {Tn < t}) ∈ Ft.

Therefore, A ∈ FT by proposition 1.4.

It follows from the assumption {0 < T < ∞} ⊆ {T < Tn} that {0 < Tn <
∞} ⊆ {T < Tn}. Thus, the second part of the assertion follows from the first one

and lemma 1.1. �

REMARK 1.2.– Nowhere in this section was the completeness of the stochastic basis

used. Using the completeness, we can slightly weaken the assumptions in some
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statements. Thus, in theorems 1.1 (4) and 1.2 (4), we can assume that S � T a.s. In

lemma 1.1, it is enough to assume that S � T a.s. and S < T on the set

{0 < T < ∞} a.s. (the latter means that P(S � T, 0 < T < ∞) = 0). We can also

modify assumptions of theorem 1.3 in a corresponding way. All this can be proved

either directly or using the statement in the next exercise.

EXERCISE 1.11.– Let T be a stopping time and S be a mapping from Ω to [0,∞] such

that {S 
= T} ∈ F and P(S 
= T ) = 0. Prove that S is a stopping time, FS = FT

and FS− = FT−.

1.3. Measurable, progressively measurable, optional and predictable σ-algebras

In this section, we introduce four σ-algebras on the product space Ω × R+. We

will assume that a right-continuous stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P) is

given.

DEFINITION 1.8.– The σ-algebra of measurable sets on Ω× R+ is the product F ⊗
B(R+) of the σ-algebra F and the Borel σ-algebra on R+. A stochastic process

X = (Xt)t∈R+ with values in E is measurable if the mapping (ω, t) � X(ω, t) is

measurable as a mapping from (Ω× R+,F ⊗ B(R+)) to (E,E ).

Note that it is not necessary to assume that X is a stochastic process. Indeed, if a

mapping X : Ω×R+ → E is measurable, then the mapping ω � Xt(ω) = X(ω, t) is

F -measurable for every t ∈ R+, i.e. X = (Xt) is a stochastic process in accordance

with the definition in section 1.1. Here we use a well-known fact that if a function

of two variables is measurable with respect to the product of σ-algebras, then it is

measurable in each variable, another one being fixed.

PROPOSITION 1.7.– Let X be a measurable stochastic process with values in E, H be

a nonnegative random variable. Then the mapping XH : Ω → E defined by XH(ω) =
X(ω,H(ω)), is a measurable mapping from (Ω,F ) to (E, E ).

PROOF.– XH is a composition of measurable mappings

ω � (ω,H(ω)) from (Ω,F ) to (Ω× R+,F ⊗ B(R+))

and

(ω, t) � X(ω, t) from (Ω× R+,F ⊗ B(R+)) to (E,E ). �

In what follows, the notation XH will be permanently used but in a wider context,

where H may also take the value +∞. In such a case, there appears to be a problem

in defining X(ω,H(ω)) if H(ω) = ∞. We will use the following two solutions (for

simplicity, E = R):
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1) We denote by XH {H<∞}, the random variable which takes value

X(ω,H(ω)), if H(ω) < ∞, and value 0 if H(ω) = ∞. If a process X is measurable

and H is an extended random variable with values in [0,∞], then XH {H<∞} is a

random variable.

2) Let us assume additionally that X = Y or X = Y−, where Y is a càdlàg

process, there exists a (maybe, infinite) limit limt→∞ Yt(ω) for almost all ω. In this

case, in section 1.1, we defined random variables Y∞ and Y∞−, equal to each other,

and it is natural to assign the same value to X∞. Then XH(ω) = X(ω,H(ω)) is

defined (uniquely up to a null set) and is an extended random variable (if H is an

extended random variable with values in [0,∞]).

The σ-algebra of measurable sets is not connected with the filtration F. It is natural

to distinguish processes, whose measurability in ω or in (ω, t) agrees with time stream.

DEFINITION 1.9.– A stochastic process X = (Xt)t∈R+
with values in E is called

adapted (relative to the filtration F) if, for every t ∈ R+, the mapping ω � Xt(ω) is

measurable as a mapping from (Ω,Ft) to (E,E ).

If the stochastic basis is complete, if X is adapted and Y is a modification of X ,

then Y is also adapted.

DEFINITION 1.10.– A stochastic process X = (Xt)t∈R+ with values in E is called

progressively measurable if, for every t ∈ R+, the mapping (ω, s) � X(ω, s) is

measurable as a mapping from (Ω × [0, t],Ft ⊗ B([0, t])) to (E, E ). A set

B ⊆ Ω× R+ is called progressively measurable if its indicator is a progressively

measurable stochastic process, i.e., if, for every t ∈ R+,

B ∩ (
Ω× [0, t]) ∈ Ft ⊗ B([0, t]).

EXERCISE 1.12.– Show that a progressively measurable set is measurable. Show that

the family of all progressively measurable sets is a σ-algebra. Show that a stochastic

process X = (Xt)t∈R+
with values in E is progressively measurable if and only if

the mapping (ω, t) � X(ω, t) is measurable as a mapping from Ω×R+ to E, where

Ω× R+ is equipped with the σ-algebra of progressively measurable sets.

Thus, we have introduced the σ-algebra of progressively measurable sets in

Ω × R+, which is contained in the σ-algebra of measurable sets. Correspondingly, a

progressively measurable process is measurable. By the above mentioned fact (see

also theorem 1.4 below) a progressively measurable process is adapted. As is

indicated in the next exercise, a measurable adapted stochastic process may not be

progressively measurable.

EXERCISE 1.13.– Let a probability space (Ω,F ,P) and a stochastic process Y be the

same as in example 1.2. Assume that, for every t ∈ R+, the σ-algebra Ft consists of
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(Lebesgue measurable) sets of Lebesgue measure 0 or 1. Show that Y is measurable

and adapted, but is not progressively measurable.

REMARK 1.3.– If Ft ≡ F , the progressively measurable and the measurable σ-

algebras coincide.

Using this remark, we can often obtain assertions concerning measurable

processes as special cases of assertions concerning progressively measurable

processes. For instance, proposition 1.7 is a corollary of theorem 1.4.

THEOREM 1.4.– Let X be a progressively measurable stochastic process and T be a

stopping time. Then the random variable XT {T<∞} is FT -measurable. If a limit

limt→∞ Xt(ω) exists for almost all ω, then the random variable XT is

FT -measurable.

PROOF.– Under the assumptions of the second assertion, the random variable X∞
is F∞-measurable (see exercise 1.5). So the second assertion follows from the first

assertion and proposition 1.6.

Fix t ∈ R+ and define two mappings:

ω � (ω, t ∧ T (ω)) from Ω to Ω× [0, t]

and

(ω, s) � Xs(ω) from Ω× [0, t] to R.

The first mapping is measurable if we take the σ-algebra Ft on Ω, and if Ω× [0, t]
is equipped with the σ-algebra Ft ⊗ B([0, t]). Indeed, let A ∈ Ft, B ∈ B([0, t]).
Then {ω : ω ∈ A, t ∧ T (ω) ∈ B} = A ∩ {ω : t ∧ T (ω) ∈ B} ∈ Ft, because

the random variable t ∧ T is Ft-measurable. The second mapping is measurable as a

mapping from (Ω × [0, t],Ft ⊗ B([0, t])) to (R,B(R)) because X is progressively

measurable. Therefore, their composition

ω � Xt∧T (ω)(ω)

is measurable as a mapping from (Ω,Ft) to (R,B(R)), i.e. {Xt∧T ∈ B} ∈ Ft for

any Borel set B. Thus,

{XT {T<∞} ∈ B} ∩ {T � t} = {XT ∈ B} ∩ {T � t}
= {Xt∧T ∈ B} ∩ {T � t} ∈ Ft.

The definition of the σ-algebra FT requires confirmation that

C := {XT {T<∞} ∈ B} ∈ F∞. As we have proved, C ∩ {T � n} ∈ Fn, hence,
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C ∩ {T < ∞} =
⋃

n

(
C ∩ {T � n}) ∈ F∞. It remains to note that the set

C ∩ {T = ∞} either is empty or coincides with {T = ∞} ∈ F∞. �

THEOREM 1.5.– Let X be a right-continuous (or left-continuous) adapted stochastic

process. Then X is a progressively measurable process.

PROOF.– Let X be right-continuous. Fix t ∈ R+. For a natural n, put

Xn
s =

{
Xk2−nt, if s ∈](k − 1)2−nt, k2−nt], k = 1, . . . , 2n,

X0, if s = 0.

Then, for a Borel set B,

{(ω, s) : Xn
s (ω) ∈ B} =

({ω : Xn
0 (ω) ∈ B} × {0})⋃( 2n⋃

k=1

({ω : Xn
k2−nt(ω) ∈ B}×](k − 1)2−nt, k2−nt]

)) ∈ Ft ⊗ B([0, t]).

Since

lim
n→∞Xn

s (ω) = Xs(ω) for all ω ∈ Ω, s ∈ [0, t],

the mapping (ω, s) � X(ω, s) is also measurable as a mapping from (Ω× [0, t],Ft⊗
B([0, t])) to (R,B(R)).

The case of a left-continuous X is considered similarly (see also lemma 1.2).

�

DEFINITION 1.11.– The optional σ-algebra on Ω×R+ is the smallest σ-algebra, with

respect to which all adapted càdlàg stochastic processes are measurable. The optional

σ-algebra is denoted by O . A stochastic process X = (Xt)t∈R+ with values in E is

called optional if the mapping (ω, t) � X(ω, t) is measurable as a mapping from

(Ω× R+,O) to (E, E ).

Earlier in the literature, the term “well measurable” was used instead of “optional”.

According to theorem 1.5, the optional σ-algebra is contained in the σ-algebra of

progressively measurable sets, hence, any optional stochastic process is progressively

measurable. The difference between these σ-algebras is not essential (see exercise 1.40

in section 1.6), but it exists. An example of a progressively measurable set which is

not optional can be found, for example, in Chapter IV of [DEL 78].

Note also that, if the stochastic basis is complete, then every right-continuous

adapted process is optional (see Chapter IV, Theorem 65 [DEL 78]).
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LEMMA 1.2.– Let X be a left-continuous adapted stochastic process. Then X is

optional.

PROOF.– For a natural n, put

Xn
t =

∞∑
k=0

Xk2−n {k2−n�t<(k+1)2−n}.

The process Xn is adapted and càdlàg, hence, Xn is optional. Since

lim
n→∞Xn

t (ω) = Xt(ω) for all ω, t,

the process X is also optional. �

To change “left” and “right” in the previous proof in order to approximate a

right-continuous adapted process by left-continuous adapted processes is not

possible: under the corresponding construction (see the proof of theorem 1.5), Xn

are not adapted.

DEFINITION 1.12.– The predictable σ-algebra on Ω × R+ is the smallest σ-algebra,

with respect to which all adapted left-continuous stochastic processes are measurable.

The predictable σ-algebra is denoted by P . A stochastic process X = (Xt)t∈R+ with

values in E is called predictable if the mapping (ω, t) � X(ω, t) is measurable as a

mapping from (Ω× R+,P) to (E,E ).

According to lemma 1.2, the predictable σ-algebra is included in the optional one.

As a rule, they do not coincide.

EXERCISE 1.14.– Construct an example of an optional set which is not predictable.

HINT.– Take a discrete filtration and embed it into a continuous filtration as is

explained after definition 1.1.

PROPOSITION 1.8.– Let X be an adapted càdlàg process. Then the process X− is

predictable and ΔX is optional. The process X is predictable if and only if ΔX is

predictable.

PROOF.– It is enough to note that X− is left-continuous and adapted. �

We successively introduced four σ-algebras on Ω×R+, each subsequent σ-algebra

being included in the previous algebras. In what follows, we will deal mostly with

the optional and predictable σ-algebras. In particular, our current aim is to provide

alternative descriptions of these two σ-algebras.
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Stochastic intervals are sets in Ω× R+ of one of the following forms:

�S, T � := {(ω, t) ∈ Ω× R+ : S(ω) � t � T (ω)},

�S, T � := {(ω, t) ∈ Ω× R+ : S(ω) � t < T (ω)},

�S, T � := {(ω, t) ∈ Ω× R+ : S(ω) < t � T (ω)},

�S, T � := {(ω, t) ∈ Ω× R+ : S(ω) < t < T (ω)},

where S and T are stopping times. A stochastic interval �T, T � is denoted by �T � and

called the graph of a stopping time T . Let us emphasize that stochastic intervals are

subsets of Ω × R+ and are not subsets of Ω × [0,∞]. In particular, our definition of

the graph of a stopping time differs from the definition of the graph of a mapping in

the theory of functions (if T takes value +∞).

All stochastic intervals are optional sets. Moreover, the following statement takes

place.

LEMMA 1.3.– Let S and T be stopping times and ξ be an FS-measurable random

variable. Then the stochastic processes ξ �S,T �, ξ �S,T �, ξ �S,T � are optional and the

stochastic process ξ �S,T � is predictable.

PROOF.– Let ξ = B , B ∈ FS . Then the process X := B �S,T � is càdlàg and,

moreover, adapted. Indeed,

{ω : Xt(ω) = 1} = B ∩ {S � t < T} =
(
B ∩ {S � t}) ∩ {t < T} ∈ Ft

for any t ∈ R+. Therefore, X = ξ �S,T � is an optional process. In order to prove that

ξ �S,T � is an optional process for an arbitrary FS-measurable random variable ξ, it

is enough to represent ξ as the limit of linear combinations of indicators of sets from

FS .

That the process ξ �S,T � is predictable is proved similarly.

Two remaining processes are optional due to the relations

ξ �S,T � = lim
n→∞ ξ �S,T+1/n�, ξ �S,T � = lim

n→∞ ξ �S+1/n,T �. �

The next corollary follows also from the definition of the predictable σ-algebra.

COROLLARY 1.1.– If T is a stopping time, then the stochastic interval �0, T � is

predictable.
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PROOF.– The set �0, T � is the complement of the set �T,∞�, which is predictable by

lemma 1.3. �

DEFINITION 1.13.– Let X be a measurable stochastic process, T be a stopping time.

The process X stopped at time T is denoted by XT and defined by

XT
t = Xt∧T .

It follows from proposition 1.7 that this definition is correct.

PROPOSITION 1.9.– Let T be a stopping time and let X be a measurable

(respectively progressively measurable, respectively optional, respectively

predictable) stochastic process. Then the stopped process XT is measurable

(respectively progressively measurable, respectively optional, respectively

predictable).

PROOF.– The measurable case reduces to the case of progressively measurable

processes according to remark 1.3. The claim in three other cases follows from the

identity

XT = X �0,T � +XT {T<∞} �T,∞�

and the predictability of the processes �0,T � and XT {T<∞} �T,∞�: the first process

is predictable by corollary 1.1, and the predictability of the second process follows

from lemma 1.3 and theorem 1.4. �

DEFINITION 1.14.– The début of a set B ⊆ Ω×R+ is the mapping DB : Ω → [0,∞]
defined by

DB(ω) =

{
inf {t ∈ R+ : (ω, t) ∈ B}, if this set is not empty,

∞, otherwise.

THEOREM 1.6.– Assume that the stochastic basis satisfies the usual conditions. Then

the début DB of any progressively measurable set B is a stopping time.

It is essential for this theorem to be true that the stochastic basis satisfies the usual

conditions. If the stochastic basis is right-continuous but not complete, then we can

assert only that there exists a stopping time T such that the set {T 
= DB} is a subset

of a F -null set.

The proof of theorem 1.6 is based on the following (difficult) theorem from the

measure theory, which is given without proof and in a simplified form.
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THEOREM 1.7.– Let (Ω,F ,P) be a complete probability space and K be a compact

metric space. Denote by π the projection from the space Ω × K onto Ω. If B is an

element of the product of σ-algebras F ⊗ B(K), then the projection π(B) of the set

B on Ω belongs to F .

In this theorem, the completeness of the probability space is also essential.

PROOF OF THEOREM 1.6.– It is obvious that, for any t ∈ R+, the set {DB < t}
is the projection on Ω of the set Bt := B ∩ �0, t�, which is considered as a subset

in the product space Ω × [0, t]. Since B is progressively measurable, Bt belongs to

the σ-algebra Ft ⊗ B([0, t]). Since the probability space (Ω,Ft,P|Ft
) is complete,

{DB < t} ∈ Ft by theorem 1.7. By proposition 1.2, DB is a stopping time. �

Theorem 1.6 will be repeatedly used in this book, in particular, if

B = {(ω, t) : Xt(ω) ∈ A}, where A is a Borel subset of the real line and X is a

progressively measurable process. In this case, the début DB is also called the hitting

time of the set A by the process X; we will use the notation inf {t : Xt ∈ A} for it.

There are special cases of hitting times, where the statement of theorem 1.6 can be

proved directly (and the completeness of the stochastic basis is not used in these

cases).

PROPOSITION 1.10.–

1) Let X be a right-continuous adapted stochastic process with values in Rd, and

let A be an open subset of Rd. Then T := inf {t : Xt ∈ A} is a stopping time.

2) Let X be a right-continuous adapted stochastic process with values in [0,∞],
whose all trajectories are nondecreasing, a ∈ [0,∞]. Then T := inf {t : Xt � a} is a

stopping time.

PROOF.–

1) For any t ∈ (0,∞),

{T < t} =
⋃

r∈Q, 0�r<t

{Xr ∈ A} ∈ Ft.

By proposition 1.2, T is a stopping time.

2) The claim follows from the relation {T � t} = {Xt � a} ∈ Ft, t ∈ R+. �

Yet another simple case of theorem 1.6 is left to the reader as an exercise.

EXERCISE 1.15.– Let X be a continuous adapted process with values in Rd and A be

a closed subset of Rd. Show that T := inf {t : Xt ∈ A} is a stopping time.
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THEOREM 1.8.– The σ-algebra O of optional sets is generated by stochastic intervals

of the form �0, T �, where T is an arbitrary stopping time.

PROOF.– Denote by O1, the σ-algebra generated by stochastic intervals �0, T �,
where T is an arbitrary stopping time. By lemma 1.3, O1 ⊆ O . To prove the converse

inclusion, it is enough to check that an adapted càdlàg process X is O1-measurable.

First, note that, if S and T are stopping times, then

�S, T � = �0, T � \ �0, S� ∈ O1.

Moreover, if B ∈ FS , then the process

B �S,T � = �SB ,T �

is O1-measurable because SB is a stopping time by proposition 1.5. As in the proof

of lemma 1.3, we conclude that the process ξ �S,T � is O1-measurable if ξ is an FS-

measurable random variable.

For natural k, put Sk
0 = 0 and define recursively

Sk
n+1 = inf {t > Sk

n : |Xt −XSk
n
| > 2−k}, n = 0, 1, . . . .

Note that Sk
n+1 is the hitting time of the open set {x ∈ R : |x| > 2−k} by the

process X − XSk
n . By induction, taking into account proposition 1.10 (1) and

proposition 1.9, we conclude that Sk
n are stopping times for all n and k. It is clear that

the sequence
{
Sk
n

}
n=0,1,2,...

is not decreasing and, moreover, its limit as n → ∞ is

equal to ∞ for all ω, which follows easily from the fact that every trajectory X·(ω) is

càdlàg.

Define the process

Xk =
∞∑

n=0

XSk
n �Sk

n,S
k
n+1

�.

As we have proved above, Xk is O1-measurable for every k. It remains to note

that X = limk→∞ Xk. Indeed, by the definition of Sk
n+1, we have |X −Xk| � 2−k

on the stochastic interval �Sk
n, S

k
n+1�, and the union of these intervals over n, as we

have proved, is Ω× R+. �

The same construction is used in the proof of the next assertion, which will be

repeatedly used in the sequel.
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THEOREM 1.9.– Let X be an adapted càdlàg process. There exists a sequence {Tn}
of stopping times such that

{ΔX 
= 0} =
⋃
n

�Tn�

and

�Tn� ∩ �Tm� = ∅, m 
= n.

Any sequence with these properties is called a sequence of stopping times

exhausting jumps of the process X .

PROOF.– Define stopping times Sk
n as in the proof of theorem 1.8. Put

Bk
n = {Sk

n < ∞, ΔXSk
n

= 0}. By proposition 1.8 and theorem 1.4, Bk

n ∈ FSk
n

.

Hence, by proposition 1.5, T k
n :=

(
Sk
n

)
Bk

n
is a stopping time. It is easy to see from

the definition of Sk
n that {ΔX 
= 0} =

⋃
k,n�T k

n �. Enumerate T k
n in a sequence

{T ′
n}; we have {ΔX 
= 0} =

⋃∞
n=1�T

′
n�. Now put A1 = Ω and

An =
⋂n−1

m=1{T ′
m 
= T ′

n}, n � 2. By theorem 1.1 (6), An ∈ FT ′
n

, hence, by

proposition 1.5, Tn :=
(
T ′
n

)
An

is a stopping time. Then, {Tn} is a required

sequence. �

The following theorem provides three characterizations of the predictable

σ-algebra. The second characterization is the most useful: the corresponding family

of sets is a semiring in Ω× R+.

THEOREM 1.10.– The predictable σ-algebra P is generated by any one of the

following families of sets or processes:

1) B × {0}, B ∈ F0, and �0, T �, where T is an arbitrary stopping time;

2) B × {0}, B ∈ F0, and B×]s, t], s, t ∈ R+, s < t, B ∈ Fs;

3) continuous adapted stochastic processes.

PROOF.– Denote by Pi, i = 1, 2, 3, the σ-algebra generated by the ith family. It is

clear that all sets and processes in these families are predictable, hence, Pi ⊆ P ,

i = 1, 2, 3.

Sets B×]s, t], where s, t ∈ R+, s < t, B ∈ Fs, can be represented as �0, tB� \
�0, sB�, therefore, P2 ⊆ P1.

Next, sets B×]s, t], where s, t ∈ R+, s < t, B ∈ Fs, are represented as {0 <
Y � t − s} where Y = (Yu)u∈R+ is a continuous adapted process given by Yu =

B(u − s)+. Sets B × {0}, where B ∈ F0, are represented as {Y = 1}, where
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Y = (Yu)u∈R+ is a continuous adapted process given by Yu = B − u. Therefore,

P2 ⊆ P3.

Finally, let X be a left-continuous adapted process. For a natural n, put

Xn = X0 {0} +
∞∑
k=0

Xk2−n ]k2−n,(k+1)2−n].

It is clear that Xn are measurable with respect to P2, hence, X = limn→∞ Xn is

also P2-measurable. Thus, P ⊆ P2. �

The next proposition is complementary to theorem 1.4. It will be used for a

characterization of predictable càdlàg processes.

PROPOSITION 1.11.– Let X be a predictable stochastic process and T a stopping time.

Then the random variable XT {T<∞} is FT−-measurable.

PROOF.– First, consider two special cases: X = B {0}, B ∈ F0, and

X = B ]s,t], s, t ∈ R+, s < t, B ∈ Fs.

In the first case, XT {T<∞} = B∩{T=0} and B ∩ {T = 0} ∈ F0 ⊆ FT−.

In the second case, XT {T<∞} = B∩{s<T�t}, B ∩ {s < T} ∈ FT− by the

definition of the σ-algebra FT−, and {T � t} ∈ FT− by theorem 1.2 (3).

Now let H be the set of predictable stochastic processes X such that the random

variable XT {T<∞} is FT−-measurable. It is clear that H is a linear space,

contains constants and is stable under limits in converging sequences. It follows from

the monotone class theorem (theorem A.3) that H is the set of all predictable

stochastic processes. Indeed, let C be the set of processes X corresponding to two

cases considered above. Obviously, C is stable under multiplication and it has been

proved that C ⊆ H . By theorem 1.10, P = σ{C }. �

PROPOSITION 1.12.– Assume that the stochastic basis satisfies the usual conditions.

Then an evanescent measurable set is predictable.

PROOF.– If a set B is evanescent, then B ⊆ A × R+, where A ∈ F and P(A) = 0,

hence A ∈ F0.

Put C := {C × [t,∞) : C ∈ F , t ∈ R+}. It is clear that C is a π-system

generating the σ-algebra of measurable sets. Now define

D := {D ∈ F ⊗ B(R+) : D ∩ (A × R+) ∈ P}. It is easy to see that D is a

λ-system and C ⊆ D . By theorem A.2 on π-λ-systems, we have D = F ⊗ B(R+).
In particular, B ∈ D , hence, B ∈ P by the definition of D . �
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COROLLARY 1.2.– Assume that the stochastic basis satisfies the usual conditions.

Let X be a progressively measurable (respectively optional, respectively predictable)

stochastic process, and let Y be a measurable process indistinguishable with X . Then

Y is progressively measurable (respectively optional, respectively predictable).

EXERCISE 1.16.– Justify the inclusion C ⊆ D in the proof of proposition 1.12.

1.4. Predictable stopping times

Let us assume that a right-continuous stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) is given.

DEFINITION 1.15.– A stopping time T is called predictable if the stochastic interval

�0, T � is predictable.

REMARK 1.4.– It is not necessary to assume a priori in this definition that T is a

stopping time. Indeed, if T is a mapping from Ω to [0,∞] such that the set B :=
{(ω, t) ∈ Ω × R+ : 0 � t < T (ω)} is progressively measurable, then X := B is

an adapted process. Hence, {Xt = 0} = {T � t} ∈ Ft for every t ∈ R+, i.e. T is a

stopping time.

LEMMA 1.4.– If T is a stopping time and t > 0, then T + t is a predictable stopping

time.

PROOF.– Indeed,

�0, T + t� =
⋃

n>1/t

�0, T + t− 1/n�,

and the sets on the right are predictable by exercise 1.7 and corollary 1.1.

EXERCISE 1.17.– Construct an example of a stopping time, which is not predictable.

HINT.– Take a discrete filtration and embed it into a continuous one as is explained

after definition 1.1.

LEMMA 1.5.– Let T be a stopping time. The following statements are equivalent:

1) T is predictable;

2) �T,∞� ∈ P;

3) �T � ∈ P.
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PROOF.– Obviously, (1) and (2) are equivalent. Since the stochastic interval �T,∞� is

predictable by lemma 1.3, it follows from the relations

�T � = �T,∞� \ �T,∞�, �T,∞� = �T � ∪ �T,∞�

that (2) and (3) are equivalent. �

The next statement complements theorem 1.10 (see also theorem 1.8).

THEOREM 1.11.– The σ-algebra P of predictable sets is generated by stochastic

intervals of the form �0, T �, where T is a predictable stopping time.

PROOF.– Denote by P1 the σ-algebra generated by intervals �0, T �, where T is a

predictable stopping time. By definition, �0, T � ∈ P for every predictable T , hence,

P1 ⊆ P .

Let T be an arbitrary stopping time. Then,

�0, T � =
∞⋂

n=1

�0, T + 1/n� ∈ P1,

because T + 1/n are predictable by lemma 1.4. Next, let B ∈ F0. Put T (ω) = 0,

if ω /∈ B, and T (ω) = ∞, if ω ∈ B. Clearly, T is a stopping time, moreover, T is

predictable because �0, T � = B × R+ ∈ P . Therefore,

B × {0} = �0, T � ∩ �0� ∈ P1.

By theorem 1.10, we get the converse inclusion P ⊆ P1. �

PROPOSITION 1.13.– Let {Tn} be a sequence of predictable stopping times. Then

1) T := supn Tn is a predictable stopping time;

2) If S := infn Tn and
⋃

n{S = Tn} = Ω, then S is a predictable stopping time.

In particular, the class of predictable stopping times is stable with respect to a finite

number of maxima and minima. The infimum of a countable number of predictable

stopping times, in general, is not predictable. For example, let S be a stopping time,

which is not predictable (see exercise 1.17). Put Tn = S + 1/n. Then all Tn are

predictable and S = infn Tn.

PROOF.– Under the assumptions of the proposition,

�0, T � =
⋃
n

�0, Tn�, �0, S� =
⋂
n

�0, Tn�. �

The following statement and the exercise after it complement proposition 1.5.
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PROPOSITION 1.14.– Let T be a predictable stopping time and A ∈ FT−. Then, TA

is a predictable stopping time.

PROOF.– Note that

T∪An = inf
n

TAn , T∩An = sup
n

TAn .

Hence, by proposition 1.13, the family G := {A ∈ FT : TA is predictable} is

closed under countable unions and intersections. Clearly, Ω ∈ G . Let A ∈ G and

Ac := Ω \A. Then

�T, TA� = �T,∞� \ �TA,∞� ∈ P,

therefore,

�0, TAc� = (Ω× R+) \ �T, TA� ∈ P,

i.e. Ac ∈ G .

Thus, G is a σ-algebra, and it is enough to verify that sets generating the σ-algebra

FT−, are in G . Let A ∈ F0, then the indicator of Ac×[0,∞[ is an adapted continuous

process, so

�0, TA� = �0, T � ∪ (
Ac × [0,∞[

) ∈ P,

hence, A ∈ G . Now let A = B ∩ {t < T}, where B ∈ Ft. Then A ∈ Ft and

�0, TAc� = �0, T � ∪ (
A×]t,∞[

) ∈ P.

Consequently, Ac ∈ G , hence A ∈ G . �

EXERCISE 1.18.– Let T be a stopping time, A ∈ FT , TA be a predictable stopping

time. Show that A ∈ FT−.

HINT.– Use proposition 1.15 below.

The next statement extends theorem 1.1 (3) and theorem 1.2 (5).

PROPOSITION 1.15.– Let S be a predictable stopping time, B ∈ FS−, and let T be a

stopping time. Then B ∩ {S � T} ∈ FT−.
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PROOF.– We have

B ∩ {S � T} = {SB � T < ∞} ∪ (
B ∩ {T = ∞}).

The second set on the right is in FT− by proposition 1.6. With regard to the first

set, the process X := �SB ,∞� is predictable due to the previous proposition, hence,

{SB � T < ∞} = {XT {T<∞} = 1} ∈ FT−

by proposition 1.11. �

The next statement follows from theorem 1.2 (5) and proposition 1.15.

COROLLARY 1.3.– Let S be a predictable stopping time, B ∈ FS−, T a stopping

time. Then B ∩ {S = T} ∈ FT−.

The next assertion complements lemma 1.3.

LEMMA 1.6.– Let S be a predictable stopping time, Y an FS−-measurable random

variable, T a stopping time. Then, the process Y �S,T � is predictable.

PROOF.– As above, it is enough to consider the case Y = B , where B ∈ FS−. Then

Y �S,T � = �SB ,T �,

SB is predictable by proposition 1.14, and

�SB , T � = �0, T � \ �0, SB� ∈ P. �

Any stopping time T is the début of a predictable set �T,∞�. So additional

assumptions are needed for the début of a predictable set to be a predictable stopping

time.

PROPOSITION 1.16.– Assume that the stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P)
is complete. Let A be a predictable set and let T := DA be its début. If �T � ⊆ A, then

T is a predictable stopping time.

PROOF.– By theorem 1.6, T is a stopping time. Therefore,

�T � = A ∩ �0, T � ∈ P,

and the claim follows from lemma 1.5. �

Two special cases of proposition 1.16 can be proved without using theorem 1.6.

They are given as exercises.
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EXERCISE 1.19 (see proposition 1.10 (2)).– Let X be a right-continuous predictable

stochastic process with values in [0,∞], whose all trajectories are nondecreasing, a ∈
[0,∞]. Prove that T := inf {t : Xt � a} is a predictable stopping time.

We should warn the reader against a possible mistake in a situation which is quite

typical in stochastic calculus (though it does not appear in this book). For example,

let a = (at) be a nonnegative progressively measurable (or predictable) stochastic

process and Xt :=
∫ t

0
as ds, where the integral is taken pathwise. Put

T := inf {t : Xt = +∞}. Then the stopping time T may not be predictable. The

point is that, though X is left-continuous and, hence, predictable, its continuity and

right-continuity may fail at T .

EXERCISE 1.20 (continuation of exercise 1.15).– Let X be a continuous adapted

stochastic process with values in Rd and let A be a closed subset of Rd. Prove that

T := inf {t : Xt ∈ A} is a predictable stopping time.

From now on we will assume that the stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) satisfies the usual conditions.

Let us formulate without proof a difficult theorem on sections. We will use it, in

particular, for an alternative description of predictable stopping times. It is supposed

that there is given a family A of stopping times, which satisfies the following

assumptions:

A1) A contains stopping times that are equal to 0 and +∞ identically;

A2) if T ∈ A , S = T a.s., then S ∈ A ;

A3) if S, T ∈ A , then S ∧ T ∈ A and S ∨ T ∈ A ;

A4) if S, T ∈ A , then S{S<T} ∈ A ;

A5) if {Tn} is a nondecreasing sequence of stopping times from A , then

supn Tn ∈ A .

THEOREM 1.12.– Let a family A of stopping times satisfy assumptions (A1)–(A5),

T be a σ-algebra of subsets of the space Ω×R+, which is generated by all stochastic

intervals �0, T �, where T ∈ A . Let π be the projection from the space Ω × R+ onto

Ω. For any set A ∈ T and for any ε > 0, there is a stopping time T ∈ A such that

�T � ⊆ A

and

P(π(A)) � P(T < ∞) + ε.
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Obviously, the set π(A) coincides with the set {DA < ∞}, where DA is the début

of A.

If A is the set of all stopping times, then, clearly, it satisfies assumptions (A1)–

(A5) and, by theorem 1.8, T = O . So, the following theorem holds.

COROLLARY 1.4 (optional section theorem).– For any optional set A and any ε > 0,
there exists a stopping time T such that

�T � ⊆ A

and

P(π(A)) � P(T < ∞) + ε.

An example of an optional set which does not admit a full section will be given in

exercise 1.34, i.e. corollary 1.4 is not valid with ε = 0.

DEFINITION 1.16.– A sequence of stopping times {Tn} foretells a stopping time T
if {Tn} is nondecreasing, T = limn Tn and {T > 0} ⊆ {Tn < T} for every n.

A stopping time T is called foretellable if there exists a sequence of stopping times

which foretells it.

EXERCISE 1.21.– Let T be a foretellable stopping time, and S = T a.s. Show that S
is a foretellable stopping time.

LEMMA 1.7.– A foretellable stopping time is predictable.

PROOF.– Let a sequence of stopping times {Tn} foretell a stopping time T . Then, by

lemma 1.3

�0, T � =
⋃
n

�0, Tn� ∈ P.

By proposition 1.14, 0{T>0} is a predictable stopping time and �0{T>0}� ∈ P by

lemma 1.5. Therefore,

�0, T � = �0{T>0}� ∪ �0, T � ∈ P. �

EXERCISE 1.22.– Show that the σ-algebra P of predictable sets is generated by

stochastic intervals of the form �0, T �, where T is a foretellable stopping time.

HINT.– Use the same arguments as in the proof of theorem 1.11.
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EXERCISE 1.23.– Prove that proposition 1.13 is still valid if predictable stopping

times are replaced by foretellable stopping times.

HINTS FOR PROPOSITION 1.13 PART (2).– It is enough to consider the case where

{Tn} is a decreasing sequence of foretellable stopping times and, for all ω, Tn(ω) =
S(ω) for n large enough. Let ρ be a metric on [0,∞], compatible with the natural

topology. For every n, we can find a sequence {Tn,p}p=1,2,... which foretells Tn and

such that

P({ω : 
(Tn,p(ω), Tn(ω)) > 2−p}) � 2−(n+p).

Put

Sp = inf
n

Tn,p.

Prove that the sequence {Sp} is nondecreasing and Sp < S on the set {S > 0} for

every p. Prove that, for every p,

P({ω : 
(lim
p

Sp(ω), S(ω)) > 2−p}) � P({ω : 
(Tn,p(ω), S(ω)) > 2−p})

� P({ω : 
(Tn,p(ω), Tn(ω)) > 2−p}) � 2−p.

Conclude that S = limp Sp a.s.

EXERCISE 1.24.– Prove that proposition 1.14 is still valid if predictable stopping

times are replaced by foretellable stopping times.

HINTS.– In contrast to the proof of proposition 1.14, define

G := {A ∈ FT : TA and TAc are foretellable}.

Prove that G is a σ-algebra, for which use exercise 1.23. Next, show that if a

sequence of stopping times {Tn} foretells a stopping time T , then FTn ⊆ G , and use

the second assertion of theorem 1.3 (1).

EXERCISE 1.25.– Prove that the family A of all foretellable stopping times satisfies

assumptions (A1)–(A5).

HINT.– Use proposition 1.15 and the previous exercise to verify (A4) .

Now we are in a position to prove two important theorems.

THEOREM 1.13.– A stopping time is predictable if and only if it is foretellable.
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THEOREM 1.14 (predictable section theorem).– For any predictable set A and for any

ε > 0, there exists a predictable stopping time T such that

�T � ⊆ A

and

P(π(A)) � P(T < ∞) + ε.

PROOF OF THEOREMS 1.13 AND 1.14.– Theorem 1.14 with a foretellable (and not

only with a predictable) stopping time T follows from theorem 1.12 applied to the

family A of all foretellable stopping times. This is possible due to exercises 1.22

and 1.25.

To prove theorem 1.13, due to lemma 1.7, we need to check only the necessity.

Thus, let T be a predictable stopping time. If T = ∞ a.s., then T , obviously, is

foretellable, so we may suppose that P(T < ∞) > 0. By lemma 1.5, the graph �T �
is a predictable set. Therefore, by the predictable section theorem, there is a sequence

{Tn} of foretellable stopping times with the graphs containing in the graph of T , and

such that

P(T < ∞) � P(Tn < ∞) + 1/n.

Replacing Tn by T1 ∧ · · · ∧ Tn, we may assume that the sequence {Tn} is

decreasing. Therefore, limn Tn is a foretellable stopping time by exercise 1.23. It

remains to note that T = limn Tn a.s. �

The following statement is a typical application of the optional and predictable

section theorems.

THEOREM 1.15.– Let X and Y be optional (respectively predictable) nonnegative

or bounded stochastic processes. If for arbitrary (respectively arbitrary predictable)

stopping time T ,

EXT {T<∞} = EYT {T<∞}, [1.2]

then X and Y are indistinguishable.

PROOF.– We consider the case of predictable processes, the proof in the optional case

is similar. If the processes X and Y are not indistinguishable, then at least one of the

predictable sets

{(ω, t) : Xt(ω) > Yt(ω)} and {(ω, t) : Xt(ω) < Yt(ω)}

is not evanescent. Then it follows from theorem 1.14 that there exists a predictable

stopping time T such that the equality [1.2] does not hold. �
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REMARK 1.5.– In order to apply theorem 1.15, it is necessary to verify [1.2] for any

stopping time, finite or not (see remark 1.7).

1.5. Totally inaccessible stopping times

Unless otherwise stated, we shall assume that a stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) satisfying the usual conditions is given.

DEFINITION 1.17.– A stopping time T is called totally inaccessible if P(ω : T (ω) =
S(ω) < ∞) = 0 (i.e. the set �T � ∩ �S� is evanescent) for any predictable stopping

time S.

EXERCISE 1.26.– Let a mapping T : Ω → [0,∞] be given; moreover,

{T = ∞} ∈ F and P(T = ∞) = 1. Show that T is a predictable and totally

inaccessible stopping time. Prove that there are no other stopping times that are

predictable and totally inaccessible simultaneously.

HINT.– Use lemma 1.7.

DEFINITION 1.18.– A stopping time T is called accessible if there exists a sequence

{Tn} of predictable stopping times such that

�T � ⊆
⋃
n

�Tn� [1.3]

up to an evanescent set, i.e.,

P
(⋃

n

{ω : Tn(ω) = T (ω) < ∞}
)
= P(T < ∞).

Under these conditions, we say that the sequence {Tn} embraces T .

REMARK 1.6.– Due to exercise 1.26, the words “up to an evanescent set” in

definition 1.18 can be omitted.

It is clear that a predictable stopping time is accessible. In exercise 1.33 we will

construct an example of an accessible stopping time T , which is not predictable;

moreover, in this example, if {Tn} embraces T , then the inclusion in [1.3] is strict,

i.e. the set(⋃
n

�Tn�
)
\ �T �
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is not evanescent. It is useful to note, however, that, among all sequences {Tn}
embracing an attainable stopping time T , we can find a sequence such that the set

∪n�Tn� is minimal up to an evanescent set (see exercise 1.41 in the next section).

We know that stochastic intervals �0, T � generate the optional σ-algebra, if T
runs over the class of all stopping times, and generate the predictable σ-algebra, if T
runs over the class of all predictable stopping times. The σ-algebra generated by

stochastic intervals �0, T �, where T runs over the class of all accessible stopping

times, is called the accessible σ-algebra. It contains the predictable σ-algebra, is

included into the optional one, and, in general, differs from both of them. The

importance of the accessible σ-algebra is not as high as that of the optional and

predictable σ-algebras.

The next theorem shows that every stopping time can be decomposed into

accessible and totally inaccessible parts.

THEOREM 1.16.– Let T be a stopping time. There exists a unique (up to a null set)

decomposition of the set {T < ∞} into two sets C and B from the σ-algebra FT−
such that TC is accessible and TB is totally inaccessible. The stopping times TC and

TB are called the accessible and totally inaccessible parts, respectively, of the stopping

time T .

PROOF.– Denote by A the family of sets of the form(⋃
n

{Tn = T < ∞}
)
,

where {Tn} is an arbitrary sequence of predictable stopping times. By corollary 1.3,

A ⊆ FT−. It is clear that A is stable under taking countable unions. Hence,

sup
A∈A

P(A)

is attained at a set, say, C from A (in other words, C = ess sup{A : A ∈ A }).

Obviously, the stopping time TC is accessible. Put B = {T < ∞} \ C. Let S be a

predictable stopping time. Then

C ∪ {TB = S < ∞} = C ∪ {T = S < ∞} ∈ A ,

C ∩ {TB = S < ∞} = ∅,

therefore, P(TB = S < ∞) = 0 by the definition of C. Thus, TB is totally

inaccessible. The uniqueness of the decomposition is proved similarly. �
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Theorem 1.16 implies,

COROLLARY 1.5.– A stopping time T is accessible (respectively totally inaccessible)

if and only if

P(ω : T (ω) = S(ω) < ∞) = 0

for every totally inaccessible (respectively accessible) stopping time S.

Theorem 1.16 helps us to prove the following theorem, which plays an important

role in the rest of the book.

THEOREM 1.17.– Let X be an adapted càdlàg process. There exists a sequence {Tn}
of stopping times such that every Tn is either predictable or totally inaccessible,

{ΔX 
= 0} ⊆
⋃
n

�Tn�

and

�Tn� ∩ �Tm� = ∅, m 
= n.

PROOF.– It follows from theorems 1.9 and 1.16, and remark 1.6, that there exists a

sequence {Sn} of stopping times which meets the requirements of the theorem

except that the graphs are disjoint. As in the proof of theorem 1.9, put A1 = Ω and

An =
⋂n−1

m=1{Sm 
= Sn}, n � 2, Tn :=
(
Sn

)
An

; every Tn is a stopping time.

Moreover, if Sn is totally inaccessible, then Tn is totally inaccessible by the

definition. If Sn is predictable, then An ∈ FSn− by corollary 1.3, hence, Tn is

predictable by proposition 1.14. Therefore, {Tn} is a required sequence. �

THEOREM 1.18.– Let X be a predictable càdlàg process. There exists a sequence

{Tn} of predictable stopping times such that

{ΔX 
= 0} =
⋃
n

�Tn�

and

�Tn� ∩ �Tm� = ∅, m 
= n.

PROOF.– By the previous theorem, there exists a sequence {Sn} of stopping times

such that every Sn is either predictable or totally inaccessible,

{ΔX 
= 0} ⊆
⋃
n

�Sn�
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and

�Sn� ∩ �Sm� = ∅, m 
= n.

Put

B = {ΔX 
= 0} \
( ⋃

n : Sn predictable

�Sn�

)
.

By proposition 1.8, the process ΔX is predictable, hence, B ∈ P . Let S be a

predictable stopping time such that �S� ⊆ B. Then

�S� ⊆
( ⋃

n : Sn totally inaccessible

�Sn�

)
.

Hence, P(S = ∞) = 1. By the predictable section theorem, B is an evanescent

set. Now put

Tn = (Sn){Sn<∞,ΔXSn 
=0}.

If Sn is predictable, then Tn is predictable by propositions 1.11 and 1.14 (or

because �Tn� = �Sn� ∩ {ΔX 
= 0} ∈ P). If Sn is totally inaccessible, then

�Tn� ⊆ B. As it has been proved, P(Tn < ∞) = 0, Thus, Tn is predictable by

exercise 1.26. So, {Tn} is a required sequence. �

THEOREM 1.19.– A càdlàg process X is predictable if and only if

P(S < ∞, ΔXS 
= 0) = 0 for every totally inaccessible stopping time S and the

random variable XT {T<∞} is FT−-measurable for every predictable stopping

time T .

PROOF.– The necessity follows from theorem 1.18 and proposition 1.11, so we prove

the sufficiency. The second part of the assumption implies, in particular, that X is

adapted. Let {Tn} be a sequence of stopping times, exhausting jumps of X . By

corollary 1.5, all Tn are accessible due to the first part of the assumptions. Using the

definition of accessible stopping times and taking into account remark 1.6, we can

find a sequence {Sn} of predictable stopping times such that

{ΔX 
= 0} ⊆
⋃
n

�Sn�.

Replacing Sn by stopping times with the graphs �Sn� \
(
∪m<n�Sm�

)
, we may

assume that the graphs �Sn� are pairwise disjoint. Then we have

X = X− +
∞∑

n=1

ΔXSn {Sn<∞} �Sn�.
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Since XSn {Sn<∞} is FSn−-measurable by the second part of the assumption

and XSn− {Sn<∞} is FSn−-measurable by proposition 1.11, the stochastic process

ΔXSn {Sn<∞} �Sn� is predictable by lemma 1.6 for every n. Therefore, the process

X is predictable. �

At the end of this section, we consider an example from the general theory of

stochastic processes in a series of exercises.

We start with a probability space (Ω,F 0,P) and a random variable S with values

in R+ on it. For example, we can take Ω = R+, F 0 = B(R+), S(ω) ≡ ω. For

simplicity, we will assume that P(S = 0) = 0.

Denote by F the completion of the σ-algebra F 0 with respect to P. The

continuation of P onto F is denoted by the same letter.

Now define the σ-algebra F 0
t , t ∈ R+, as the smallest σ-algebra, with respect to

which the random variable S ∧ t is measurable. In other words,

F 0
t = {S−1(B) : B ∈ B0

t },

where B0
t is the σ-algebra on R+, generated by Borel subsets in [0, t[ and the atom

[t,∞[.

EXERCISE 1.27.– Show that F0 := (F 0
t )t∈R+ is a filtration.

EXERCISE 1.28.– Show that F 0
t− = F 0

t for every t ∈ R+.

EXERCISE 1.29.– Show that, for every t ∈ R+,

F 0
t+ = {S−1(B) : B ∈ B0

t+},

where the σ-algebra B0
t+ is obtained from the σ-algebra B0

t by splitting the atom

[t,∞[ into two atoms, {t} and ]t,∞[. Conclude that the filtration F0 is not right-

continuous.

EXERCISE 1.30.– Show that S is a stopping time with respect to a filtration (Gt)t∈R+

if and only if F 0
t+ ⊆ Gt for every t ∈ R+. In particular, S is a stopping time with

respect to the filtration (F0)
+
= (F 0

t+)t∈R+ , but is not a stopping time relative to F0.

Define a stochastic process X = (Xt)t∈R+ by

Xt(ω) = {t�S(ω)}.

It is clear that X is a càdlàg process. It is adapted with respect to some filtration

if and only if S is a stopping time with respect to this filtration. So the statement in
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the previous exercise can be reformulated as follows: (F0)
+

is the smallest filtration,

with respect to which X is adapted.

Let

N = {A ∈ F : P(A) = 0}.

Put, for every t ∈ R+

Ft := {A	B : A ∈ F 0
t+, B ∈ N }.

According to exercises 1.2–1.4, the stochastic basis

B := (Ω,F ,F = (Ft)t∈R+ ,P) satisfies the usual conditions. Moreover, F is the

smallest (for given Ω, F , and P) filtration such that the corresponding stochastic

basis satisfies the usual conditions and X is adapted.

All subsequent statements refer to the stochastic basis B. The first one says that

the σ-algebra FS coincides with the σ-algebra generated by S as a random variable

up to a P-null set.

EXERCISE 1.31.– Prove that

σ{S} ∨ N = FS− = FS = F∞.

In the next exercise, we give a simple characterization of all stopping times.

EXERCISE 1.32.– Show that a mapping T : Ω → [0,∞] is a stopping time (with

respect to the filtration F) if and only if it is F∞-measurable and there is a constant

r ∈ [0,∞] such that, P-a.s.,

T � S on {S � r}

and

T = r on {S > r}.

HINTS TO “ONLY IF”.– If P(T < S) > 0, then the set

U := {u ∈ R+ : P(T � u < S) > 0}

is not empty. For u ∈ U , deduce from the condition {T � u} ∈ Fu that {T � u} ⊇
{S > u} a.s., i.e. P(S > u, T > u) = 0. Conclude that P(T � u < S) does not

increase in u on the set U and that inf U ∈ U . Now take inf U as r.
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To solve the next exercises use exercise 1.32 and the fact that a predictable stopping

times is foretellable (theorem 1.13).

EXERCISE 1.33.– Assume that the random variable S has a discrete distribution.

Prove that S is an accessible stopping time. Moreover, if S does not equal a.s. a

constant, then S is not a predictable stopping time, and its graph is not represented as

a countable union of the graphs of predictable stopping times up to an evanescent set.

EXERCISE 1.34.– Assume that the random variable S has a continuous distribution.

Prove that S is a totally inaccessible stopping time. Show that the optional set A :=
�0, S� does not admit a full section (see the remark after corollary 1.4).

EXERCISE 1.35.– Assume that the distribution of the random variable S has both

continuous and discrete components. Show that S is neither an accessible, nor a totally

inaccessible stopping time. Find the accessible and totally inaccessible parts of S.

1.6. Optional and predictable projections

Optional and predictable projections are a very useful and important tool in

stochastic calculus. However, in this book, we will use only predictable projections

and just to prove theorem 2.16, so this section may be skipped at first reading. Also,

note that here we use some results from the theory of martingales developed in

section 2.1.

Let a stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P) satisfying the usual

conditions be given.

THEOREM 1.20.– Let X be a bounded measurable process. There exists a unique (up

to indistinguishability) bounded optional process Y such that

EXT {T<∞} = EYT {T<∞} [1.4]

for every stopping time T . This process is called the optional projection of X and

denoted by OX .

THEOREM 1.21.– Let X be a bounded measurable process. There exists a unique (up

to indistinguishability) bounded predictable process Z such that

EXT {T<∞} = EZT {T<∞} [1.5]

for every predictable stopping time T . This process is called the predictable projection

of X and denoted by ΠX .
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PROOF OF THEOREM 1.21.– Note that if two bounded measurable processes X1 and

X2 satisfy X1 � X2 (up to an evanescent set) and have predictable projections ΠX1

and ΠX2, then ΠX1 � ΠX2 (up to an evanescent set). Indeed, if the predictable

set B := {ΠX1 > ΠX2} is not evanescent, then, by theorem 1.14 on predictable

sections, there is a predictable stopping time T such that P(T < ∞) > 0 and �T � ⊆
B. Obviously, this contradicts [1.5].

In particular, a predictable projection is unique up to indistinguishability if it exists.

Let H be the class of bounded measurable processes whose predictable projection

exists. It is clear that H is a linear space and contains constants. If 0 � X1 �
. . . � Xn � . . . � C, then, as we have proved, 0 � ΠX1 � . . . � ΠXn �
. . . � C everywhere, except on an evanescent set N . It follows from the theorem on

monotone convergence that (Ω×R+)\N limn ΠX
n is a predictable projection of the

process limn X
n. Therefore, by theorem A.3 on monotone classes, it is sufficient to

prove the existence of predictable projections for processes

X = ξ [0,s],

where ξ is a bounded random variable and s ∈ R+. Denote by M a bounded

martingale such that Mt = E(ξ|Ft) a.s. for every t ∈ R+, and put Z := M− [0,s].

Then, using exercise 2.14 and theorem 2.4, we get

EXT {T<∞} = Eξ {T�s} = EM∞ {T�s} = EE(M∞|FT−) {T�s}

= EMT− {T�s} = EZT {T<∞}

for every predictable stopping time T . Hence, Z = ΠX . �

PROOF OF THEOREM 1.20.– Completely similar to the proof of theorem 1.21, the

only differences are that we should use the theorem on optional sections

(corollary 1.4) instead of theorem 1.14 at the beginning of the proof, and we should

take Y := M [0,s] at the end. �

EXERCISE 1.36.– Let X be a bounded measurable process. Show that there exist a

sequence {Tn} of stopping times and an evanescent set N such that

{OX 
= ΠX} ⊆
(⋃

n

�Tn�
)
∪N.

HINT.– Use theorem A.3 on monotone classes.

The following theorem establishes a connection between projections and

conditional expectations.



38 Stochastic Calculus for Quantitative Finance

THEOREM 1.22.– Let X be a bounded measurable process. Then, P-a.s.,

(OX)T {T<∞} = E(XT {T<∞}|FT ) [1.6]

for every stopping time T and

(ΠX)T {T<∞} = E(XT {T<∞}|FT−) [1.7]

for every predictable stopping time T .

In particular, OX is an optional modification of a (defined up to a modification)

stochastic process E(Xt|Ft), and ΠX is a predictable modification of a stochastic

process E(Xt|Ft−).

PROOF.– Let T be a stopping time and B ∈ FT . Then, TB is a stopping time by

proposition 1.5, and the equality [1.4], applied to TB , yields

EXT B {T<∞} = E(OX)T B {T<∞}.

This equality is equivalent to [1.6] because the random variable (OX)T {T<∞}
is FT -measurable by theorem 1.4. Similarly, let T be a predictable stopping time

and B ∈ FT−. Then TB is a predictable stopping time by proposition 1.14, and the

equality [1.5] applied to TB , yields

EXT B {T<∞} = E(ΠX)T B {T<∞}.

This equality is equivalent to [1.7] because the random variable (ΠX)T {T<∞}
is FT−-measurable by proposition 1.11. �

The assertions in the next exercise are simple consequences of section theorems

(section 1.4).

EXERCISE 1.37.– Let X and Y be optional (respectively predictable) stochastic

processes and XT = YT P-a.s. for every bounded (respectively bounded and

predictable) stopping time. Prove that X and Y are indistinguishable.

REMARK 1.7.– The equalities [1.6] and [1.7] characterize the optional and predictable

projections, respectively. Moreover, as exercise 1.37 shows, it is sufficient to check

them only for bounded stopping times. On the contrary, it is necessary to check the

equalities [1.4] and [1.5] for every stopping time, with finite or infinite values (see

remark 1.5 to theorem 1.15). Indeed, let ξ be an F∞-measurable bounded random

variable with Eξ = 0 (but P(ξ = 0) < 1), X = ξ [0,+∞[. Then for every finite (or

finite P-a.s.) stopping time T

EXT {T<∞} = EXT = Eξ = 0.
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However, Y ≡ 0 is neither an optional projection nor a predictable projection

of X .

EXERCISE 1.38.– Justify the preceding assertion.

REMARK 1.8.– Optional and predictable projections can be defined for every

nonnegative measurable process X as the limit in n of the corresponding projections

of the processes X ∧ n. In this case, projections may take value +∞. The equalities

[1.4]–[1.7] are still valid.

EXERCISE 1.39.– Let X, Y and Z be bounded measurable stochastic processes.

Moreover, assume that Y is optional and Z is predictable. Prove that

Π(OX) = ΠX, O(XY ) = Y (OX), Π(XZ) = Z(ΠX). [1.8]

The following states that the difference between the progressively measurable and

the optional σ-algebras is rather small. Recall that, however, these σ-algebras, in

general, do not coincide.

EXERCISE 1.40.– Let X be a progressively measurable stochastic process. Prove that

there exists an optional process Y such that XT = YT a.s. for every finite stopping

time T . If X is the indicator of a set, then Y can be taken as an indicator function.

EXERCISE 1.41.– Let T be an accessible stopping time and X = �T �. Show that, if

a sequence {Tn} of predictable stopping times embraces T, then

{ΠX > 0} ⊆
⋃
n

�Tn�

up to an evanescent set, and there is an embracing sequence such that the equality

holds up to an evanescent set.



2

Martingales and Processes
with Finite Variation

2.1. Elements of the theory of martingales

This section outlines the basics of the theory of martingales with continuous time.

Most results were obtained by Doob and are stated without proof. Unproved

statements can be found in many textbooks on the theory of stochastic processes.

DEFINITION 2.1.– A stochastic process X = (Xt)t∈R+ on a stochastic basis

B = (Ω,F ,F = (Ft)t∈R+ ,P) is called a martingale (respectively a submartingale,

respectively a supermartingale) if X is adapted, E|Xt| < ∞ for all t ∈ R+ and

Xs = E(Xt|Fs) (respectively Xs � E(Xt|Fs),

respectively Xs � E(Xt|Fs)) P-a.s.

for all s, t ∈ R+, s < t.

It is clear that X is a submartingale if and only if −X is a supermartingale.

Therefore, statements related to submartingales admit equivalent formulation for

supermartingales and vice versa. We will usually formulate results only for

supermartingales. It is also clear that a process is a martingale if and only if it is both

a submartingale and a supermartingale.

EXERCISE 2.1.– Let a stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P) and a

probability Q on (Ω,F ) be given. Denote by Pt and Qt, the restrictions of P and Q,

respectively onto the σ-algebra Ft. Let Qt = Qc
t + Qs

t be the Lebesgue

decomposition of Qt into the absolutely continuous component Qc
t and the singular

component Qs
t relative to Pt. Put Zt = dQc

t/dPt, Z = (Zt)t∈R+ . Show that Z is a

supermartingale. Show that, if Qt � Pt for all t ∈ R+, then Z is a martingale.
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PROPOSITION 2.1.– Let X = (Xt)t∈R+ be a martingale, f : R → R be a convex

function and E|f(Xt)| < ∞ for all t ∈ R+. Then f(X) = (f(Xt))t∈R+ is a

submartingale. In particular, if p � 1 and E|Xt|p < ∞ for all t ∈ R+, then

(|Xt|p)t∈R+ is a submartingale.

PROPOSITION 2.2.– Let X = (Xt)t∈R+ be a submartingale, f : R → R a convex

increasing function, and E|f(Xt)| < ∞ for all t ∈ R+. Then f(X) = (f(Xt))t∈R+

is a submartingale.

PROOF OF PROPOSITIONS 2.1 AND 2.2.– A real-valued convex function on the real

line is continuous and, hence, measurable. Thus, the process f(X) is adapted. The

integrability of random variables f(Xt) is due to the assumptions. Applying Jensen’s

inequality for conditional expectations, we get, for all s < t,

E
[
f(Xt)|Fs

]
� f

[
E(Xt|Fs)

]
� f(Xs)

(under the assumptions of proposition 2.1 the second inequality becomes an equality).

�

Processes with independent increments are also a source of examples of

martingales, sub- and supermartingales.

DEFINITION 2.2.– A stochastic process X = (Xt)t∈R+ given on a probability space

(Ω,F ,P) is called a process with independent increments if, for every n ∈ N and all

t0, t1, . . . , tn such that 0 = t0 < t1 < · · · < tn, the random variables Xt0 , Xt1 −Xt0 ,

. . . , Xtn −Xtn−1 are independent.

DEFINITION 2.3.– A stochastic process X = (Xt)t∈R+ given on a stochastic basis

B = (Ω,F ,F = (Ft)t∈R+ ,P) is called a process with independent increments on
B if it is adapted relative to F and, for every s, t ∈ R+, s < t, the random variable

Xt −Xs and the σ-algebra Fs are independent.

EXERCISE 2.2.– Let a stochastic process X = (Xt)t∈R+ be a process with

independent increments on a stochastic basis B. Show that X is a process with

independent increments in the sense of definition 2.2.

EXERCISE 2.3.– Let a stochastic process X = (Xt)t∈R+ given on a probability space

(Ω,F ,P) be a process with independent increments in the sense of definition 2.2. Put

Ft = σ{Xs, s � t}. Show that X is a process with independent increments on the

stochastic basis (Ω,F ,F = (Ft)t∈R+ ,P).

EXERCISE 2.4.– Let a stochastic process X = (Xt)t∈R+
be a process with

independent increments on a stochastic basis B = (Ω,F ,F,P). Show that X is a

process with independent increments on the stochastic basis BP = (Ω,FP,FP,P)
(see exercise 1.3 for the notation).
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EXERCISE 2.5.– Let a stochastic process X = (Xt)t∈R+ be a process with

independent increments on a stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P).
Assume that X is right-continuous in probability, i.e. for every t ∈ R+,

lim
δ↓0

P(|Xt+δ −Xt| > ε) = 0 for every ε > 0.

Show that X is a process with independent increments on the stochastic basis

B+ = (Ω,F ,F+,P) (see exercise 1.2 for the notation).

Exercises 2.3–2.5 show that if a stochastic process is a process with independent

increments in the sense of definition 2.2 and is right-continuous in probability, then

it is a process with independent increments on some stochastic basis satisfying the

usual conditions. In accordance with this, the phrase like “W is a Wiener process on a

stochastic basis B” will always mean in the following that W is a Wiener process and,

at the same time, is a process with independent increments on the stochastic basis B.

EXERCISE 2.6.– Assume that X is a process with independent increments on a

stochastic basis B. Find necessary and sufficient conditions for X to be a martingale

(submartingale).

EXERCISE 2.7.– Let W = (Wt)t∈R+ be a Wiener process on a stochastic basis

(Ω,F ,F,P). Put Xt = exp(Wt − t/2). Show that W and X = (Xt)t∈R+ are

martingales.

EXERCISE 2.8.– Let W = (Wt)t∈R+ be a Wiener process on a probability space

(Ω,F ,P). Give an example of a filtration F on (Ω,F ) such that W is adapted to F

but is not a process with independent increments on the stochastic basis (Ω,F ,F,P).

The following exercise is part of the assertion of theorem 2.1 below.

EXERCISE 2.9.– Let X be a right-continuous supermartingale. Show that the function

t � EXt is right-continuous on R+.

HINT.– Deduce from the supermartingale property that, for a given t ∈ R+, the

sequence of random variables {X−
t+1/n} is uniformly integrable. Apply Fatou’s

lemma to {Xt+1/n}.

Definition 2.1 and the previous exercises do not require that the stochastic basis

satisfies the usual conditions. From now on, we will assume that the stochastic basis

B = (Ω,F ,F = (Ft)t∈R+ ,P) satisfies the usual conditions.

Note that if a stochastic basis is complete, a modification of an adapted process is

again an adapted process. Thus, a modification of a martingale (respectively a

submartingale, respectively a supermartingale), is a martingale (respectively a

submartingale, respectively a supermartingale).
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THEOREM 2.1 (without proof).– A supermartingale X has a càdlàg modification if

and only if the function t � EXt is right-continuous on R+. In particular, every

martingale has a càdlàg modification.

ADDITION TO DEFINITION 2.1.– From now on, if not stated otherwise, we consider

only càdlàg martingales, sub- and supermartingales.

THEOREM 2.2 (on convergence a.s.; without proof).– Let X be a supermartingale and

sup
t∈R+

EX−
t < ∞. [2.1]

Then with probability one, there exists a limit X∞ = limt→∞ Xt and E|X∞| <
∞.

REMARK 2.1.– Quite often (especially if X is a martingale), theorem 2.2 is

formulated with the assumption

sup
t∈R+

E|Xt| < ∞, [2.2]

which is more strong, at first sight, than [2.1]. In fact, if X is a supermartingale, [2.1]

and [2.2] are equivalent:

E|Xt| = EXt + 2EX−
t � EX0 + 2 sup

t∈R+

EX−
t .

EXERCISE 2.10.– Prove the second assertion in theorem 2.2.

In the next theorem necessary and sufficient conditions on a supermartingale X are

given, under which the supermartingale property remains valid for all stopping times.

DEFINITION 2.4.– A supermartingale X = (Xt)t∈R+ is called a closed
supermartingale if there exists a random variable ξ such that

E|ξ| < ∞ and Xt � E(ξ|Ft) for all t ∈ R+. [2.3]

A submartingale X = (Xt)t∈R+ is called a closed submartingale if −X is a closed

supermartingale.

REMARK 2.2.– If X is a closed supermartingale, then, obviously, condition [2.1] in

theorem 2.2 is satisfied. Therefore, for every stopping time T , the random variable

XT is well defined up to an evanescent set.
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THEOREM 2.3 (without proof).– Let X be a closed supermartingale. Then, for every

stopping times S and T such that S � T a.s., random variables XS and XT are

integrable and

XS � E(XT |FS) P-a.s. [2.4]

REMARK 2.3.– It is, indeed, necessary that a supermartingale is closed in order for

[2.4] to be true: take S = t, T = ∞, ξ = X∞.

REMARK 2.4.– Let X be a martingale. It follows from theorem 2.3 that we have

equality in [2.4] if (and only if) X is both a closed supermartingale and a closed

submartingale.

EXERCISE 2.11.– Let X be a martingale from exercise 2.7. Show that X is a closed

supermartingale but not a closed submartingale. Give an example of stopping times

S � T such that equality in [2.4] does not hold.

COROLLARY 2.1.– Let X be a supermartingale. Then, for every stopping times S and

T such that S � T � N a.s. for some N ∈ N, the random variables XS and XT are

integrable and

XS � E(XT |FS) P-a.s. [2.5]

PROOF.– Let Yt := Xt∧N . It is easy to see that Y = (Yt)t∈R+ is a closed

supermartingale. It remains to note that XS = YS and XT = YT a.s. �

COROLLARY 2.2.– Let X be a supermartingale. Then, for every stopping time T, the

stopped process XT is a supermartingale.

PROOF.– That XT is adapted follows, e.g., from theorem 1.4. Next, the random

variables XT
t = XT∧t are integrable by the previous corollary. Fix s and t,

0 � s < t. Define a supermartingale Y as in the previous proof with N = t. Then

XT∧t = YT = YT {T>s} + YT {T�s} = YT∨s {T>s} + YT {T�s}.

The random variable YT {T�s} is Fs-measurable, hence,

E(XT∧t|Fs) = E(YT∨s {T>s}|Fs) + YT {T�s}

= {T>s}E(YT∨s|Fs) + YT {T�s}

� {T>s}Ys + YT {T�s} = YT∧s = XT∧s,

where the inequality follows from theorem 2.3 applied to the process Y and stopping

times s and T ∨ s. �
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COROLLARY 2.3.– Let X be a martingale. Then, for every stopping time T, the

stopped process XT is a martingale.

DEFINITION 2.5.– A stochastic process X = (Xt)t∈R+ is called uniformly integrable
if the family (Xt)t∈R+ is uniformly integrable. A progressively measurable stochastic

process X = (Xt)t∈R+ belongs to the class (D) if the family (XT ), where T runs

over the class of all a.s. finite stopping times, is uniformly integrable. A progressively

measurable stochastic process X = (Xt)t∈R+ belongs to the class (DL) if, for every

t ∈ R+, the process Xt (i.e. the process X stopped at the deterministic time t) belongs

to the class (D). In other words, a progressively measurable stochastic process X =
(Xt)t∈R+ belongs to the class (DL) if, for every t ∈ R+, the family (XT∧t), where

T runs over the class of all stopping times, is uniformly integrable.

Let us introduce the following notation:

M is a class of all martingales,

M is a class of all uniformly integrable martingales.

By corollary 2.3, M is stable under stopping. By proposition A.1, if M ∈ M and

t ∈ R+, then M t ∈ M .

EXERCISE 2.12.– Prove that a martingale is uniformly integrable if and only if it is

both a closed supermartingale and a closed submartingale.

THEOREM 2.4.– Let M = (Mt)t∈R+ ∈ M . Then random variables Mt converge a.s.

and in L1 to a random variable M∞ as t → ∞, and for every stopping time T,

MT = E(M∞|FT ) P-a.s. [2.6]

If T is a predictable stopping time, then P-a.s.

E(M∞|FT−) = E(MT |FT−) = MT− [2.7]

(recall that M∞− = M∞).

With regard to [2.7], let us note that if M ∈ M and T is not a predictable stopping

time, then E(M∞|FT−) and MT− may not be connected. For example, it is possible

that EMT− 
= EM∞ and that MT− is not even integrable. We give an example of

the first opportunity in the next exercise, and an example of the second opportunity is

postponed until section 2.5 (example 2.4).
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EXERCISE 2.13.– Construct an example of a martingale M ∈ M with M0 = 0 and a

stopping time T such that E|MT−| < ∞ and EMT− 
= 0.

HINT.– Take a process πt − λt, where (πt) is a Poisson process with intensity λ, and

stop it at the moment of the first jump of the Poisson process.

PROOF OF THEOREM 2.4.– It follows from theorem A.4 that M satisfies the

assumptions of Ttheorem 2.2. Hence, for almost all ω, there is a limit

limt→∞ Mt(ω) = M∞(ω) and E|M∞| < ∞. By theorem A.7, for every sequence

{tn} converging to ∞, the sequence {Mtn} converges to M∞ in L1. Therefore, Mt

converges in L1 to M∞ as t → ∞. Passing to the limit as s → ∞ in the equality∫
B

Mt dP =

∫
B

Ms dP, B ∈ Ft, t < s,

we get∫
B

Mt dP =

∫
B

M∞ dP, B ∈ Ft, i.e., Mt = E(M∞|Ft) P -a.s.

Hence, the assumptions of theorem 2.3 are satisfied for both M and −M , and [2.6]

follows.

Now let T be a predictable stopping time. Then, by theorem 1.13, there is a

sequence {Sn} of stopping times, which is a foretelling sequence for T . It follows

from [2.6] that, for every n, a.s.

E(M∞|FSn) = MSn .

Let us pass to the limit as n → ∞ in this relation. By Lévy’s theorem for

martingales with discrete time, the left side a.s. converges to E
(
M∞

∣∣∣∨n FSn

)
.

Moreover,
∨

n FSn = FT− by the second statement in theorem 1.3 (1). On the other

hand, we have Sn < T and Sn → T on the set {T > 0}. Hence, on this set, the

variables MSn converge to MT− (almost surely on the set {T = ∞}). With regard to

the set {T = 0}, we have Sn = 0 for all n on it, and, hence, MSn ≡ M0 = M0−.

Thus, we have proved that the expressions on the left and on the right in [2.7]

coincide. That they are equal to the middle term follows from [2.6]. �

So far we have proved that every uniformly integrable martingale M is represented

in the form

Mt = E(ξ|Ft), [2.8]
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where E|ξ| < ∞: take M∞ as ξ. Conversely, let ξ be an integrable random variable.

Define (up to a modification) a stochastic process M = (Mt)t∈R+ by [2.8]. It follows

from the tower property of conditional expectations that M is a martingale in the sense

of definition 2.1, while proposition A.1 implies the uniform integrability of M . By

theorem 2.1, M has a càdlàg modification (which is unique up to indistinguishability

by proposition 1.1). For this modification, the statement of theorem 2.4 is true, and

M∞ = E(ξ|F∞) P-a.s.

EXERCISE 2.14.– Prove the previous assertion.

The next statement follows from [2.6] and proposition A.1.

COROLLARY 2.4.– Every uniformly integrable martingale belongs to the class (D),
and every martingale belongs to the class (DL).

In section 2.2, we construct an example of a uniformly integrable supermartingale

that does not belong to the class (D).

COROLLARY 2.5.– The class M is stable under stopping.

Let us denote by Lp(F∞), 1 � p < ∞, the space Lp(Ω,F∞,P|F∞) of

(equivalence classes of P-a.s. equal) F∞-measurable random variables ξ with

E|ξ|p < ∞. Let us also identify indistinguishable processes in M . By theorem 2.4,

the mapping M � M∞ maps M into L1(F∞). It follows from [2.6] and

proposition 1.1 that this mapping is injective, and it is surjective by exercise 2.14. In

other words, this mapping is an isomorphism of linear spaces M and L1(F∞).

Define for p ∈ [1,∞)

M p :=
{
M ∈ M : E|M∞|p < ∞}

.

Here, as in the case of M , we identify indistinguishable processes, i.e. we

interpret elements of the space M p as equivalence classes of indistinguishable

stochastic processes. It is clear that M 1 = M and that the mapping

M p � M � M∞ is an isomorphism of linear spaces M p and Lp(F∞). Thus, the

relation

‖M‖Mp :=
(
E|M∞|p)1/p

supplies M p with a norm which makes it a Banach space isomorphic to Lp(F∞).
It follows from [2.6] and Jensen’s inequality for conditional expectations that M p is

stable under stopping.



Martingales and Processes with Finite Variation 49

Let us formulate one more theorem belonging to Doob. To simplify the writing, we

introduce the following notation which will also be used later. Let X be a stochastic

process. Put

X∗
t := sup

0�s�t
|Xs|, X∗

∞ := sup
t∈R+

|Xt|.

EXERCISE 2.15.– Let X be an adapted càdlàg stochastic process. Show that X∗ =
(X∗

t )t∈R+ is an adapted stochastic process with values in R+, all trajectories of which

are right-continuous and nondecreasing, and X∗
∞(ω) = limt→∞ X∗

t (ω) for all ω.

THEOREM 2.5 (without proof).– Let X be a nonnegative closed submartingale and

p ∈ (1,∞). Then

E
(
X∗

∞
)p �

( p

p− 1

)p

EXp
∞.

COROLLARY 2.6.– Let M be a martingale, t ∈ R+, p ∈ (1,∞). Then

E
(
M∗

t

)p �
( p

p− 1

)p

E|Mt|p.

and

E
(
M∗

∞
)p �

( p

p− 1

)p

sup
t∈R+

E|Mt|p. [2.9]

PROOF.– To prove the first inequality, apply theorem 2.5 to the submartingale |M |
stopped at deterministic time t. The second inequality follows from the first inequality.

�

REMARK 2.5.– If M ∈ M , then we can apply theorem 2.5 directly to a submartingale

|M | which is itself closed in this case, and obtain

E
(
M∗

∞
)p �

( p

p− 1

)p

E|M∞|p

for every p > 1. The same inequality under the same assumptions is easy to deduce

from [2.9], because it follows from [2.6] and Jensen’s inequality for conditional

expectations that E|Mt|p � E|M∞|p for every t ∈ R+. But if M is a martingale

satisfying only the assumptions of theorem 2.2, the above inequality may not be true.

EXERCISE 2.16.– Let M be the process X in exercises 2.7 and 2.11. Prove that

EM∗
∞ = +∞ and, for every p ∈ (1,∞), the left side of [2.9] equals +∞, while

E|M∞|p = 0.
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It is useful to introduce one more family of martingale spaces and reformulate

some of previous results in new terms.

For M ∈ M and p ∈ [1,∞), put

‖M‖H p :=
(
E(M∗

∞)p
)1/p

, H p := {M ∈ M : ‖M‖H p < ∞}.

Again, let us identify indistinguishable stochastic processes in H p. It is easy to

check that H p is a normed linear space. It is clear that H p are stable under stopping,

H q ⊆ H p ⊆ M p ⊆ M for 1 � p < q < ∞.

COROLLARY 2.7.– Let M be a martingale and p ∈ (1,∞). The following statements

are equivalent:

1) supt∈R+
E|Mt|p < ∞;

2) the family {|Mt|p}t∈R+ is uniformly integrable;

3) M ∈ M p;

4) M ∈ H p.

Moreover, in this case,

‖M‖Mp � ‖M‖H p � p

p− 1
‖M‖Mp . [2.10]

PROOF.– Implication (4)⇒(3) has been mentioned above as obvious. If (3) holds,

then [2.6] and Jensen’s inequality for conditional expectations imply

|Mt|p � E(|M∞|p|Ft) for every t ∈ R+, and (2) follows from proposition A.1.

Implication (2)⇒(1) follows from theorem A.4. Implication (1)⇒(4) is proved in

corollary 2.6. The same corollary combined with remark 2.5 implies the second

inequality in [2.10], while the first inequality is evident. �

If p = 1, implications (4)⇒(3)⇔(2)⇒(1) in corollary 2.7 are clearly still valid.

The martingale X in exercises 2.7 and 2.11 satisfies (1) but does not satisfy the other

three statements. The inclusion H 1 ⊆ M is, in general, strict; see example 2.4.

It follows from the completeness of the space M p and inequality [2.10] that:

COROLLARY 2.8.– H p is a Banach space for p ∈ (1,∞).

The previous statement is true for p = 1 as well.

THEOREM 2.6.– H 1 is a Banach space.
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PROOF.– Let {Mn} be a Cauchy sequence in H 1. It is enough to find a convergent

(in H 1) subsequence {Mnk}.

Choose nk for k = 1, 2, . . . so that n1 < n2 < · · · < nk < . . . and ‖Mn −
Mm‖H 1 � 2−k for n,m � nk. Let ξk := (Mnk+1 −Mnk)∗∞, then Eξk � 2−k. By

the monotone convergence theorem,

E
∞∑
k=1

ξk =
∞∑
k=1

Eξk < ∞.

Therefore, the series
∑∞

k=1 ξk(ω) converges for almost all ω. For these ω, the

series

∞∑
k=1

(M
nk+1

t (ω)−Mnk
t (ω))

converges uniformly in t ∈ R+ by the Weierstrass test, therefore, Mnk
t (ω) converges

uniformly in t ∈ R+. Denote the limit of Mnk
t (ω) by Mt(ω). For ω such that the series∑∞

k=1 ξk(ω) diverges, put Mt(ω) = 0 for all t ∈ R+. Since Mt = limk→∞ Mnk
t

a.s., Mt is Ft-measurable, i.e. M = (Mt)t∈R+ is an adapted stochastic process.

Since the right-continuity and the existence of left limits preserve under the uniform

convergence, M is a càdlàg process. Next, obviously,

(M −Mnk)∗∞ �
∞∑
i=k

ξi a.s.,

hence,

EM∗
∞ < ∞ and E(M −Mnk)∗∞ → 0.

It remains to note that it follows from the previous relation that, for every t ∈ R+,

random variables Mnk
t converge to Mt in L1. Therefore, we can pass to the limit as

k → ∞ in both sides of∫
B

Mnk
s dP =

∫
B

Mnk
t dP, s < t, B ∈ Fs,

and to obtain∫
B

Ms dP =

∫
B

Mt dP, s < t, B ∈ Fs,

Thus, M is a martingale. �
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REMARK 2.6.– We can prove directly that H p, p > 1, is complete. Indeed, let {Mn}
be a Cauchy sequence in H p, then it is a Cauchy sequence in H 1 as well. We have

just proved that there is a subsequence {Mnk} which converges in H 1 to a martingale

M ∈ H 1. Moreover, (M −Mnk)∗∞ → 0 a.s. By Fatou’s lemma,

E
(
M∗

∞
)p � lim inf

k
E
(
(Mnk)∗∞)p < ∞,

hence, M ∈ H p. For a given ε > 0, let k be such that ‖Mnl − Mnk‖H p � ε if

l > k. By Fatou’s lemma,

E
(
(M −Mnk)∗∞

)p � lim inf
l

E
(
(Mnl −Mnk)∗∞

)p � εp.

We can introduce another useful norm on the space H p, p � 1, which is

equivalent to ‖ · ‖H p , and which is based on the Burkholder–Davis–Gundy

inequality.

2.2. Local martingales

Unless otherwise stated, we will assume that a stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) satisfying the usual conditions is given.

DEFINITION 2.6.– A sequence {Tn} of stopping times is called a localizing sequence
if T1(ω) � . . . � Tn(ω) � . . . for all ω and limn→∞ Tn(ω) = +∞ for almost all ω.

The following technical assertion will be used repeatedly further.

LEMMA 2.1.–

1) If {Tn} and {T ′
n} are localizing sequences, then {Tn ∧ T ′

n} is a localizing

sequence.

2) Let a localizing sequence {Tn} and, for every n, localizing sequences

{Tn,p}p∈N be given. Then there exists a localizing sequence {Sn} such that, for every

n,

Sn � Tn ∧ Tn,pn .

for some natural numbers pn.

PROOF.– (1) is obvious. Let us prove (2).

For every n, choose pn such that

P(Tn,pn < n) � 2−n.
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This is possible because

lim
p→∞P(Tn,p < n) = 0.

Now put, for every n,

Sn := Tn ∧ (
inf
m�n

Tm,pm

)
.

By proposition 1.3, Sn is a stopping time. The monotonicity of Sn in n follows

from the monotonicity of Tn and the definition of Sn. Next,

P(Sn < Tn ∧ n) � P
(
inf
m�n

Tm,pm < n
)
�

∞∑
m=n

P(Tm,pm < m)

�
∞∑

m=n

2−m = 2−n+1.

Thus,

∞∑
n=1

P(Sn < Tn ∧ n) < ∞.

By the Borel–Cantelli lemma, for almost all ω,

Sn(ω) � Tn(ω) ∧ n for n � n(ω). [2.11]

However, it follows from definition 2.6 that, for almost all ω,

lim
n→∞Tn(ω) ∧ n = +∞. [2.12]

Combining [2.11] and [2.12], we get that, for almost all ω,

lim
n→∞Sn(ω) = +∞. �

DEFINITION 2.7.– An adapted càdlàg process M = (Mt)t∈R+
is called a local

martingale if there exists a localizing sequence {Tn} of stopping times such that, for

every n, we have MTn ∈ M , i.e. the stopped process MTn is a uniformly integrable

martingale. The class of all local martingales is denoted by Mloc.
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If M ∈ Mloc and {Tn} is a localizing sequence of stopping times such that MTn ∈
M for every n, then we will say that {Tn} is a localizing sequence for M ∈ Mloc. A

similar terminology will also be used for other “local classes” introduced later.

Our definition of a local martingale M always implies that E|M0| < ∞.

Sometimes in the literature, another definition of a local martingale is used, which

admits an arbitrary F0-measurable random variable as the initial value M0, namely,

a local martingale is understood as an adapted process M such that M − M0 is a

local martingale in the sense of our definition. It is easy to see that both definitions

coincide if E|M0| < ∞.

It is clear that M ⊆ Mloc: take Tn = n as a localizing sequence. It is also clear

that the class Mloc is stable under stopping: this follows from the definition and from

the fact that M is stable under stopping, see corollary 2.5. The class Mloc is a linear

space, use lemma 2.1 (1) to prove that the sum of two local martingales is a local

martingale.

Local martingales play a very significant role in the following, and a considerable

part of the book is devoted to studying their properties. In the end of the book, we

introduce the notion of a σ-martingale, which also generalizes the notion of a

martingale and includes the notion of a local martingale. The importance of the

notion of a σ-martingale became apparent in the second half of the 1990s in

connection with the first fundamental theorem of asset pricing.

THEOREM 2.7.– Let M be an adapted càdlàg process. The following statements are

equivalent:

1) there exists a localizing sequence {Tn} such that MTn ∈ H 1 for every n;

2) M ∈ Mloc;

3) there exists a localizing sequence {Tn} such that MTn ∈ M for every n;

4) there exists a localizing sequence {Tn} such that MTn ∈ Mloc for every n.

The assertion of the theorem can be written in a symbolic form as H 1
loc = Mloc =

M loc = (Mloc)loc.

PROOF.– Since H 1 ⊆ M ⊆ M ⊆ Mloc, implications (1)⇒(2)⇒ (3)⇒(4) are

obvious.

We will first prove (4)⇒(1) under the assumption M ∈ M . Put

Tn := inf {t : |Mt| > n}. By proposition 1.10, Tn is a stopping time. It is evident

that Tn increase, and the regularity of trajectories of M implies limn Tn = ∞, i.e.

{Tn} is a localizing sequence. Finally, MTn ∈ M due to corollary 2.5, and(
MTn

)∗
∞ = M∗

Tn
� n+ |MTn | {Tn<∞} ∈ L1,
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i.e. MTn ∈ H 1.

Now implication (4)⇒(1) is proved by applying lemma 2.1 (2) two times. The

argument is standard and will often be replaced by the words “by localization”.

Assume first that M ∈ Mloc, then MTn ∈ M for some localizing sequence {Tn}.

We have just proved that, for every n, there exists a localizing sequence {Tn,p}p∈N

such that (MTn)
Tn,p ∈ H 1 for all p. By lemma 2.1, there exists a localizing

sequence {Sn} such that

Sn � Tn ∧ Tn,pn

for every n with some pn. Then MSn

=
(
(MTn)

Tn,pn

)Sn

∈ H 1 because H 1 is

stable under stopping.

Finally, let (4) hold, i.e. MTn ∈ Mloc for a localizing sequence {Tn}. It was

proved in the previous paragraph that, for every n, there exists a localizing sequence

{Tn,p}p∈N such that (MTn)
Tn,p ∈ H 1 for all p. The rest of the proof is the same as

in the previous case. �

THEOREM 2.8.– Let M ∈ Mloc. It is necessary and sufficient for M ∈ M that M
belongs to the class (D).

PROOF.– The necessity was mentioned in corollary 2.4, so we prove the sufficiency.

Let a local martingale M belong to the class (D). In particular, the family (Mt)t∈R+

is uniformly integrable and E|Mt| < ∞ for all t. Hence, it is enough to check the

martingale property for M . Thus, let s < t, B ∈ Fs, and let {Tn} be a localizing

sequence for M ∈ Mloc. Then:∫
B

MTn
s dP =

∫
B

MTn
t dP. [2.13]

Note that limn→∞ MTn
s = limn→∞ Ms∧Tn = Ms a.s., and the sequences {MTn

s }
and {MTn

t } are uniformly integrable because M belongs to the class (D). So we can

pass to the limit as n → ∞ under the integral signs in [2.13] and to obtain∫
B

Ms dP =

∫
B

Mt dP. �

In the proof, we can clearly see where the uniform integrability of values of M
at stopping times is used. In fact, there exist local martingales M that are uniformly

integrable but do not belong to the class (D) and, hence, are not martingales. An

example will be given soon.
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It follows from the following statement that a nonnegative local martingale is a

supermartingale. However, in contrast to the case of discrete time, see [SHI 99,

Chapter II, p. 100–101], it may not be a martingale, as we will see in the example

mentioned in the previous paragraph.

Let us say that an adapted càdlàg process X = (Xt)t∈R+
is a local

supermartingale if there exists a localizing sequence {Tn} of stopping times such

that, for every n, the stopped process XTn is a supermartingale.

THEOREM 2.9.– A nonnegative local supermartingale is a supermartingale.

PROOF.– Let X � 0 and let XTn be a supermartingale for every n, where {Tn} is a

localizing sequence. Then, for every t ∈ R+,

EXt∧Tn = EXTn
t � EXTn

0 = EX0,

and, by Fatou’s lemma,

EXt � lim inf
n→∞ EXt∧Tn � EX0 < ∞.

We obtain that the random variables Xt are integrable for every t.

Let a > 0 and 0 � s < t. Obviously,

E
(
XTn

t ∧ a
∣∣Fs

)
� E

(
XTn

t

∣∣Fs

) ∧ a � XTn
s ∧ a,

which implies, for every B ∈ Fs,∫
B

(Xt∧Tn ∧ a) dP �
∫
B

(Xs∧Tn ∧ a) dP.

By the dominated convergence theorem, we may pass to the limit as n → ∞ under

the integral sign in both sides of the previous inequality:∫
B

(Xt ∧ a) dP �
∫
B

(Xs ∧ a) dP.

It remains to pass to the limit under the integral sign in the last inequality as a → ∞
(this is possible by the monotone or dominated convergence theorems):∫

B

Xt dP �
∫
B

Xs dP.

Thus, X is a supermartingale. �
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COROLLARY 2.9.– Let M be a nonnegative local martingale with M0 = 0. Then M
is indistinguishable with the identically zero process.

PROOF.– By theorem 2.9, M is a supermartingale. Hence, for every t ∈ R+,

0 � EMt � EM0 = 0.

Since Mt is nonnegative, we have Mt = 0 a.s. It remains to use proposition 1.1. �

We will often refer later to the next theorem which describes jumps of local

martingales at predictable stopping times. The readers, not familiar with the

definition of conditional expectation for nonintegrable random variables, are

recommended to read section A.3 in the Appendix.

THEOREM 2.10.– Let M ∈ Mloc and T be a predictable stopping time. Then a.s.

E
(|ΔMT | {T<∞}

∣∣FT−
)
< ∞ and E

(
ΔMT {T<∞}

∣∣FT−
)
= 0.

PROOF.– Let {Tn} be a localizing sequence for M ∈ Mloc. Applying theorem 2.4 to

the uniformly integrable martingale MTn , we get, for every n,

E|MT∧Tn | < ∞ and E
(
MT∧Tn

∣∣FT−
)
= M(T∧Tn)− a.s. on {T < ∞}.

Since {T � Tn} ∈ FT− by theorem 1.2 (5), we have Bn := {T � Tn} ∩ {T <
∞} ∈ FT−, hence

E|MT | Bn < ∞ and E
(
MT

∣∣FT−
)
= MT− a.s. on Bn.

It remains to note that ∪nBn = {T < ∞} a.s. and {T < ∞} ∈ FT−. �

In the discrete time, a local martingale is an adapted process for which the one-step

martingale property holds but the integrability may fail. It is a mistake to imagine that

in the case of continuous time the situation is similar. The following two examples

illustrate this point.

EXAMPLE 2.1.– Let W = (Wt)t∈R+ be a standard Wiener process on a complete

probability space (Ω,F ,P). Assume that a filtration G = (Gt)t∈R+ on (Ω,F ) is such

that the stochastic basis BG := (Ω,F ,G,P) satisfies the usual conditions and W is a

process with independent increments on BG; see definition 2.3 and exercises 2.3–2.5).

Recall that Xt = exp(Wt − t/2) is a martingale on BG according to exercise 2.7.

Now let us take a one-to-one increasing (and necessarily continuous) function

ψ : [0, 1) → [0,∞).
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Put Ft := Gψ(t) for t ∈ [0, 1) and Ft := F for t ∈ [1,∞), F := (Ft)t∈R+ . It

is clear that F is a filtration and the stochastic basis BF := (Ω,F ,F,P) satisfies the

usual conditions. Put also

M̃t :=

{
Xψ(t), if t ∈ [0, 1),

0, if t ∈ [1,∞).

The process M̃ = (M̃t)t∈R+ is adapted relative to F, and its trajectories are

continuous everywhere except possibly the point t = 1, where they are

right-continuous. Moreover, it follows from the law of iterated logarithm for the

Wiener process that

lim
t→∞(Wt − t/2) = −∞ a.s.,

hence the set N := {ω : lim supt→∞ Xt > 0} has zero measure. Now define, for

all t,

Mt(ω) :=

{
M̃t(ω), if ω /∈ N,

0, if ω ∈ N.

The process M = (Mt)t∈R+ is continuous, nonnegative, adapted relative to F

(because the basis BF is complete). Next, for 0 � s < t < 1,

EMt = EXψ(t) = EX0 = 1

and

E(Mt|Fs) = E(Xψ(t)|Fψ(s)) = Xψ(s) = Ms,

and, for t � 1,

Mt = 0.

Hence, M is a supermartingale on BF, which has the martingale property on the

intervals [0, 1) and [1,∞), but this property is “broken” at t = 1. We assert that,

additionally, M is a local martingale.

Indeed, put Tn := inf {t : Mt > n}. By proposition 1.10 (1), Tn is a stopping time

on BF. It is obvious that Tn are increasing. Since all trajectories of M are bounded,

for every ω, Tn(ω) = ∞ for n large enough. Thus, {Tn} is a localizing sequence.

Now we check that MTn is a uniformly integrable martingale on BF for every n.

Since MTn is a supermartingale on BF, see Corollary 2.2, it is enough to show that
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EMTn = EM0 = 1, see Exercise 2.17 below. Let Sn := inf {t : Xt > n}. Then Sn

is a stopping time on BG and clearly ψ(Tn) = Sn a.s., where ψ(∞) := ∞. Since

0 � XSn � n, the stopped process XSn , being a martingale on BG, is a uniformly

integrable martingale on BG. Hence,

EXSn
= EX0 = 1

and

EMTn = EXSn = 1.

EXERCISE 2.17.– Let a supermartingale X satisfy the assumptions of theorem 2.3.

Show that X ∈ M if and only if EX∞ = EX0.

EXERCISE 2.18.– Using example 2.1, construct an example of a local martingale

M = (Mt)t∈R+ , such that M0 = M1 = 0 and P(Mt = 0) = 0, 0 < t < 1.

In example 2.1, M = (Mt)t∈R+ is a nonnegative continuous local martingale,

whose expectation EMt as a function of t has a jump at t = 1. In the following

classical example, we construct a nonnegative continuous local martingale

M = (Mt)t∈R+ , whose expectation EMt is continuous in t ∈ [0,∞] (which implies

that M is uniformly integrable) but strictly decreasing in t. Thus, a supermartingale

M = (Mt)t∈R+ is uniformly integrable but does not belong to the class (D) and

even to the class (DL).

EXERCISE 2.19.– Let X = (Xt)t∈R+ be a nonnegative supermartingale. Assume

that the function t � EXt is continuous on [0,∞] (note that the random variable

X∞ is defined and integrable by theorem 2.2). Prove that the process X is uniformly

integrable. The continuity of X is not assumed.

EXAMPLE 2.2.– Let (Ω,F ,P) be a complete probability space with a

three-dimensional (3D) Brownian motion W = (W 1,W 2,W 3) on it. This means

that W is a stochastic process with values in R3, whose components

W i = (W i
t )t∈R+ , i = 1, 2, 3, are independent standard Wiener processes. A filtration

F = (Ft)t∈R+ on (Ω,F ) is chosen in such a way that the stochastic basis

B := (Ω,F ,F,P) satisfies the usual conditions, W is adapted relative to F, and, for

any 0 � s < t, the random vector Wt − Ws and the σ-algebra Fs are independent.

Put Xt = Wt + (0, 0, 1). The process M = (Mt)t∈R+ that we want to construct is

given by

Mt =
1

‖Xt‖ , t ∈ R+, [2.14]

where ‖ · ‖ is the Euclidean norm in R3. However, we cannot do it directly because

the denominator in [2.14] may vanish.
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So let us first define

Tn := inf {t : ‖Xt‖ < 1/n}.

By proposition 1.10, Tn is a stopping time for every n. Obviously, the sequence

Tn increases in n. Define the process Mn = (Mn
t )t∈R+ by

Mn
t =

1

‖XTn
t ‖ , t ∈ R+.

It is clear that Mn is a continuous adapted nonnegative stochastic process bounded

from above by n. The key fact is that Mn is a local martingale and, hence, a uniformly

integrable martingale. The proof of this fact is based on Itô’s formula, see theorem 3.10

and exercise 3.9 in section 3.2, and what is essential is that the function x � 1/‖x‖
is harmonic on R3 \ {0}.

Since X is continuous, we have Mn
Tn

= n on the set {Tn < ∞}. Next, EMn
Tn

=
EMn

0 = 1 by theorem 2.4, hence,

1 = EMn
Tn

� EMn
Tn {Tn<∞} = nP(Tn < ∞),

hence P(Tn < ∞) � 1/n. Therefore, P
(∩n{Tn < ∞}) = 0 and, since Tn are

increasing,

lim
n

Tn = ∞ P-a.s.

Now we can define M by [2.14] for ω such that limn Tn(ω) = ∞; otherwise, put

Mt(ω) = 1 for all t. It is clear that M is a continuous adapted process. Since MTn and

Mn are indistinguishable, we have MTn ∈ M for every n. Therefore, M ∈ Mloc. In

particular, M is a supermartingale by theorem 2.9.

Now let us compute EMt. The vector Xt has a Gaussian distribution with the

density

ft(x) =
1√

(2πt)3
e−

1
2t‖x−x0‖2

, x = (x1, x2, x3), x0 = (0, 0, 1).

Hence,

EMt =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

1

‖x‖ft(x) dx1 dx2 dx3.
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Passing to the spherical coordinates

x1 = r sinϕ cosϑ, x2 = r sinϕ sinϑ, x3 = r cosϕ,

0 � r < ∞, 0 � ϕ � π, 0 � ϑ < 2π,

we get

EMt =
1√

(2πt)3

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

1

‖x‖e
− 1

2t‖x−x0‖2

dx1 dx2 dx3

=
1√

(2πt)3

+∞∫
0

π∫
0

2π∫
0

1

r
e−

1
2t

[
r2 sin2 ϕ+(r cosϕ−1)2

]
r2 sinϕdϑ dϕdr

=
2π√
(2πt)3

+∞∫
0

re−
r2+1
2t

π∫
0

e
r cosϕ

t sinϕdϕdr

=
2π√
(2πt)3

+∞∫
0

re−
r2+1
2t

1∫
−1

e
rz
t dz dr

=
2πt√
(2πt)3

+∞∫
0

e−
r2+1
2t

(
e

r
t − e−

r
t

)
dr

=
1√
2πt

+∞∫
0

(
e−

(r−1)2

2t − e−
(r+1)2

2t

)
dr

=
1√
2π

( +∞∫
−1/

√
t

e−
y2

2 dy −
+∞∫

+1/
√
t

e−
y2

2 dy

)

= Φ(1/
√
t)− Φ(−1/

√
t),

where Φ(·) is the distribution function of the standard normal law. Thus, the function

t � EMt is strictly decreasing and continuous on [0,∞), and limt↑∞ EMt = 0. We

conclude that M is not a martingale. Note also that, by theorem 2.2, there exists a.s. a

limit limt↑∞ Mt = M∞, and EM∞ � 0 by Fatou’s lemma, that is, M∞ = 0 a.s. By

exercise 2.19, the process M is uniformly integrable.
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We can also prove the uniform integrability in a direct way using the

Vallée–Poussin criterion. Indeed, similarly to the previous computations,

EM2
t =

1√
(2πt)3

∫∫∫
R3

1

‖x‖2 e
− 1

2t‖x−x0‖2

dx1 dx2 dx3

� 2√
(2πt)3

∫∫∫
‖x‖>1/2

1

‖x‖e
− 1

2t‖x−x0‖2

dx1 dx2 dx3

+
e−

1
8t√

(2πt)3

∫∫∫
‖x‖�1/2

1

‖x‖2 dx1 dx2 dx3

� 2 +
e−

1
8t√

(2πt)3

1/2∫
0

π∫
0

2π∫
0

1

r2
r2 sinϕdϑ dϕdr

� 2 + 2π sup
t>0

e−
1
8t√

(2πt)3
< ∞,

i.e.,

sup
t∈R+

EM2
t < ∞. [2.15]

Thus, M is a continuous local martingale satisfying [2.15], however, M /∈ H 2,

because M is not a martingale. So this example also shows that it is not enough to

assume in corollary 2.7 that M is a local martingale.

EXERCISE 2.20.– Show that P(Tn < ∞) = 1/n in example 2.2.

2.3. Increasing processes and processes with finite variation

We will assume that a stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P) satisfying

the usual conditions is given.

DEFINITION 2.8.– An adapted stochastic process A = (At)t∈R+ is called an

increasing process if, for all ω, trajectories t � At(ω) are right-continuous, start

from 0, i.e. A0(ω) = 0, and are nondecreasing, i.e. As(ω) � At(ω) for every

s, t ∈ R+, s � t. An adapted process A = (At)t∈R+ is called a process with finite
variation if, for all ω, trajectories t � At(ω) are right-continuous, start from 0, and

have a finite variation on [0, t] for every t ∈ R+. The class of all increasing processes

is denoted by V +, and the class of all processes with finite variation is denoted by V .
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EXERCISE 2.21.– Let A ∈ V . Show that the following conditions are equivalent:

1) there is a process B ∈ V + indistinguishable from A;

2) for almost all ω, trajectories t � At(ω) are nondecreasing;

3) As � At a.s. for all s, t ∈ R+, s < t.

Increasing processes and processes with finite variation relative to the filtration

Ft ≡ F will be called increasing processes in the wide sense and processes with

finite variation in the wide sense, respectively. In other words, to define corresponding

processes in the wide sense, we should omit the word “adapted” in definition 2.8.

Trajectories of any process with finite variation, besides being right-continuous,

have finite left limits at every point in (0,∞). Thus, processes in V are optional.

If A ∈ V +, then, for all ω, there exists a limit

A∞(ω) = limt↑∞ At(ω) ∈ [0,+∞].

It is clear that V + is a convex cone, V is a linear space, V + and V are stable

under stopping. If a process A is such that ATn ∈ V + (respectively ATn ∈ V ) for

all n for some localizing sequence {Tn}, then A is indistinguishable with a process in

V + (respectively in V ). This explains why we do not introduce corresponding local

classes.

Let A ∈ V . The variation of a trajectory s � As(ω) on the interval [0, t] is denoted

by Var (A)t(ω). It follows from the next proposition that Var (A) =
(
Var (A)t)t∈R+

is a stochastic process (even if A is a process with finite variation in the wide sense

only). All relations in this proposition are understood to hold for all trajectories.

PROPOSITION 2.3.– Let A ∈ V . There is a unique pair (B,C) of processes B,C ∈
V + such that

A = B − C, Var (A) = B + C.

In particular, Var (A) ∈ V +. If A is predictable, B, C and Var (A) are

predictable.

PROOF.– Put

B =
Var (A) +A

2
, C =

Var (A)−A

2
, [2.16]
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see [A.8]. The required pathwise properties of processes B, C and Var (A) follow

from results given in Appendix A.4. Next, by [A.7], for every t ∈ R+,

Var (A)t = lim
n→∞

2n∑
k=1

|Akt2−n −A(k−1)t2−n |,

which implies that Var (A) is adapted. Hence, each of the processes B, C and Var (A)
belongs to V +. Finally, let A be predictable. Since

ΔVar (A) = |ΔA|,

processes ΔVar (A) and Var (A) are predictable by proposition 1.8. Hence, B and C
are also predictable in view of [2.16]. �

In particular, it follows from this proposition that every process in V can be

represented as the difference of two increasing processes from V +. The converse is,

of course, also true. Thus, V = V + − V +.

DEFINITION 2.9.– A process A ∈ V is called purely discontinuous, if, for all ω and

t ∈ R+,

At(ω) =
∑

0<s�t

ΔAs(ω).

The class of all purely discontinuous processes with finite variation is denoted by

V d.

In the next exercise, the equality is understood to hold for all trajectories.

EXERCISE 2.22.– Let A ∈ V . Show that there are a continuous process B ∈ V and a

purely discontinuous process C ∈ V d such that A = B + C.

Trajectories of a process A ∈ V have finite variation on every finite interval

(unlike, say, a Wiener process). Consequently, we can define an “integral process”∫ t

0
Hs dAs as the pathwise Lebesgue–Stieltjes integral for a wide class of

processes H .

Let A be a process with finite variation in the wide sense and H be a measurable

stochastic process. Then, for every ω, the trajectory t � Ht(ω) is a measurable (with

respect to the Borel σ-algebra B(R+)) function. Therefore, we can define

Yt(ω) :=

⎧⎪⎨⎪⎩
t∫
0

Hs(ω) dAs(ω), if
t∫
0

|Hs(ω)| dVar (A)s(ω) < ∞,

+∞, otherwise.

[2.17]
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LEMMA 2.2.– Let A be a process with finite variation in the wide sense and H be a

measurable stochastic process. Then, for every t, the mapping ω � Yt(ω), given by

[2.17], is a random variable (with values in (−∞,+∞]). If, moreover, A ∈ V and H
is progressively measurable, then Y = (Yt)t∈R+ is an adapted stochastic process with

values in (−∞,+∞].

PROOF.– It is enough to prove only the second assertion, because the first assertion

follows from it if we put Ft ≡ F . Thus, let A ∈ V . Fix t ∈ R+ and introduce

the class H of bounded functions H(ω, s) on Ω × [0, t], which are measurable with

respect to the σ-algebra Ft ⊗B([0, t]) and such that the integral (taking finite values

for every ω)

t∫
0

H(ω, s) dAs(ω),

is Ft-measurable. Recall that this integral (and the first integral in [2.17] assuming

the second integral is finite) is defined for every ω as the difference of the

Lebesgue–Stieltjes integrals of the function s � Hs(ω) with respect to the

Lebesgue–Stieltjes measures corresponding to the increasing functions s � Bs(ω)
and s � Cs(ω), where B and C are from proposition 2.3. It is easy to see that H
satisfies the assumptions of theorem A.3 on monotone classes. However, obviously,

H contains the family C of functions H of the form H = D×{0} or H = D×]u,v],

where D ∈ Ft, 0 � u < v � t. Since the family C generates the σ-algebra

Ft ⊗ B([0, t]), by the monotone class theorem, H consists of all bounded

Ft ⊗ B([0, t])-measurable functions.

Let a process H in the statement of the lemma be nonnegative and A ∈ V +.

Apply the statement that was just proved to the functions H ∧ n and pass to the limit

as n → ∞. The monotone convergence theorem shows that Yt are Ft-measurable

(note that Yt(ω) =
∫ t

0
Hs(ω) dAs(ω) for all ω in this case).

In the general case, we now have that four integrals
∫ t

0
H+

s (ω) dBs(ω),∫ t

0
H−

s (ω) dBs(ω),
∫ t

0
H+

s (ω) dCs(ω),
∫ t

0
H−

s (ω) dCs(ω) are Ft-measurable. The

claim follows easily. �

THEOREM 2.11.– Let A be a process with finite variation in the wide sense and H be

a measurable stochastic process. Assume that

P

(
ω :

t∫
0

|Hs(ω)| dVar (A)s(ω) < ∞
)

= 1 [2.18]
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for every t ∈ R+. Define Y = (Yt)t∈R+ as in [2.17]. There exists a process with finite

variation in the wide sense and indistinguishable with Y . Any such process is denoted

by H ·A = (H ·At)t∈R+ . Processes

Var (H ·A) and |H| ·Var (A) are indistinguishable. [2.19]

Processes

Δ(H ·A) and HΔA are indistinguishable. [2.20]

If A ∈ V and H is progressively measurable, then H · A ∈ V . If A and H are

predictable, then H ·A is predictable.

REMARK 2.7.– The set in [2.18] is in F by lemma 2.2.

PROOF.– Put

D :=

∞⋂
n=1

{
ω :

n∫
0

|Hs(ω)| dVar (A)s(ω) < ∞
}

and H̃ := H D×R+ . Define a process Ỹ as in [2.17] with H̃ instead of H . Then

Ỹ = Y D×R+ . By the assumptions, P(D) = 1, hence, Ỹ is indistinguishable with Y .

Moreover,

t∫
0

|H̃s(ω)| dVar (A)s(ω) < ∞

and

Ỹ (ω) =

t∫
0

H̃s(ω) dAs(ω)

for all ω and all t. Consequently, we can take Ỹ as H · A. Indeed, Ỹ is a stochastic

process by lemma 2.2. The required properties of trajectories of Ỹ and relation [2.19]

follow from properties of the Lebesgue–Stieltjes integral; see Appendix A.4. Further,

ΔỸ = H̃ΔA, [2.21]

thus, [2.20] holds for this and, therefore, for every version of the process H ·A.
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Note that the process D×R+ is predictable. Indeed, it has continuous trajectories

and it is adapted due to the completeness of the filtration. Therefore, the process H̃ is

progressively measurable (respectively predictable), when H is progressively

measurable (respectively predictable). Hence, when A ∈ V and H is progressively

measurable, Ỹ is adapted by lemma 2.2, where any version of H · A is adapted due

to the completeness of the stochastic basis, i.e. H ·A ∈ V .

Finally, let A and H be predictable. Then Ỹ is predictable in view of [2.21] and

proposition 1.8. An arbitrary version of H ·A is predictable by corollary 1.2. �

Thus, under the assumptions of theorem 2.11, given a pair (H,A) of processes, we

have constructed an integral process H · A. It is easy to see that this operation deals,

essentially, with equivalence classes of indistinguishable stochastic processes: if H
and H ′ are indistinguishable measurable processes, A and A′ are indistinguishable

processes with finite variation in the wide sense, H and A satisfy the assumptions of

theorem 2.11, then H ′ and A′ do the same and any version of the process H ′ ·A′ is a

version of the process H ·A and vice versa.

In the next chapter, we will introduce a similar notation for stochastic integrals.

When it may cause confusion, we will use the notation H
s· A for the Lebesgue–

Stieltjes integrals.

Let A be an increasing process in the wide sense and H be a nonnegative

measurable process. Then the version Ỹ of the process H · A, constructed in the

proof of theorem 2.11, is an increasing process in the wide sense. Therefore, for

every version of H · A, there exists, a.s., a limit limt↑∞ H · At = H · A∞, and, for

almost all ω,

H ·A∞(ω) =

∞∫
0

Hs(ω) dAs(ω), [2.22]

where the integral on the right is understood as the Lebesgue–Stieltjes integral.

DEFINITION 2.10.– A stochastic process H is called locally bounded if there exists a

localizing sequence {Tn} of stopping times such that the process H �0,Tn� is bounded

(uniformly in t and ω) for every n.

EXERCISE 2.23.– Let a process H be measurable and locally bounded, and let A be

a process with finite variation in the wide sense. Show that [2.18] holds for every

t ∈ R+.

In the following, we are especially interested in predictable integrands. It is

convenient to introduce a corresponding notation.
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DEFINITION 2.11.– Let A ∈ V . Then Lvar(A) denotes the class of all predictable
processes H satisfying [2.18] for every t ∈ R+.

EXERCISE 2.24.– Let H be a measurable process indistinguishable with zero process.

Show that H ∈ Lvar(A) for every A ∈ V .

HINT.– Use proposition 1.12.

For ease of reference, we state the following theorem. All equalities are understood

up to indistinguishability. Statements that have not been proved before are left to the

reader as an exercise.

THEOREM 2.12.– Let A ∈ V and H ∈ Lvar(A). Then H · A ∈ V and the following

statements hold:

1) if B ∈ V , H ∈ Lvar(B) and α, β ∈ R, then H ∈ Lvar(αA+ βB) and

H · (αA+ βB) = α(H ·A) + β(H ·B);

2) if K ∈ Lvar(A) and α, β ∈ R, then αH + βK ∈ Lvar(A) and

(αH + βK) ·A = α(H ·A) + β(K ·A);

3) if T is a stopping time, then H ∈ Lvar(A
T ), H �0,T � ∈ Lvar(A) and

(H ·A)T = H ·AT =
(
H �0,T �

) ·A;

4) K ∈ Lvar(H ·A) ⇐⇒ KH ∈ Lvar(A) and then K · (H ·A) = (KH) ·A;

5) Δ(H ·A) = HΔA;

6) if A is predictable, then H ·A is predictable;

7) if A ∈ V +, H � 0, then there is a version H ·A which lies in V +.

EXERCISE 2.25.– Prove statements (1)–(4) of the theorem.

2.4. Integrable increasing processes and processes with integrable variation.
Doléans measure

We will assume that a stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P) satisfying

the usual conditions is given.

DEFINITION 2.12.– An increasing stochastic process A = (At)t∈R+ ∈ V + is called

an integrable increasing process if EA∞ < ∞. A process with finite variation A =
(At)t∈R+ ∈ V is called a process with integrable variation if EVar (A)∞ < ∞.
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The class of all integrable increasing processes is denoted by A +, and the class of all

processes with integrable variation is denoted by A .

Similarly to the previous section, an integrable increasing process in the wide sense

(respectively a process with integrable variation in the wide sense) is understood as an

integrable increasing process (respectively a process with integrable variation) relative

to the filtration Ft ≡ F .

It is clear that A + and A are stable under stopping and A = A + − A +. If

A ∈ A (or A is a process with integrable variation in the wide sense), then, for

ω such that Var (A)∞(ω) < ∞, there exists a finite limit limt↑∞ At(ω), so that a

random variable A∞ is defined and finite a.s.

It is possible to associate a finite measure on the σ-algebra of measurable sets

with an integrable increasing process in the wide sense. This measure is called the

Doléans measure. Correspondingly, given a process with integrable variation in the

wide sense, we associate a bounded signed measure on the σ-algebra of measurable

sets with it, which is also called the Doléans measure. Moreover, optional (i.e.

adapted) integrable increasing processes are indistinguishable if the corresponding

Doléans measures coincide on the optional σ-algebra, while predictable integrable

increasing processes are indistinguishable if the corresponding Doléans measures

coincide on the predictable σ-algebra. A more complicated important question is

whether a measure on the optional (respectively predictable) σ-algebra is the

restriction onto this σ-algebra of the Doléans measure of some adapted (respectively

predictable) integrable increasing process. This section is devoted to the study of

these issues.

DEFINITION 2.13.– Let A be a process with integrable variation in the wide sense. A

signed measure μA on the space (Ω× R+,F ⊗ B(R+)) defined by

μA(B) = E( B ·A∞),

is called the Doléans measure corresponding to A.

PROPOSITION 2.4.– Definition 2.13 is correct. The signed measure μA takes finite

values and vanishes on evanescent sets. If A is increasing in the wide sense process,

then μA is nonnegative.

PROOF.– Obviously, B · A is a process with integrable variation in the wide sense

for every B ∈ F ⊗B(R+). Hence, μA(B) is defined and finite; moreover, it is equal

to 0 on evanescent sets and takes nonnegative values if A is an increasing process in

the wide sense. So it is enough to check that μA is countably additive and only for

an increasing A. Let B be the union of a countable number of pairwise disjoint sets

Bn ∈ F ⊗ B(R+). Put

ξn(ω) = Bn ·A∞(ω), ξ(ω) = B ·A∞(ω).
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In view of [2.22] and since the Lebesgue–Stieltjes measure corresponding to the

function t � At(ω) is countably additive, we have ξ =
∑

n ξn a.s. By the monotone

(or dominated) convergence theorem,

μA(B) = Eξ =

∞∑
n=1

Eξn =

∞∑
n=1

μA(Bn). �

PROPOSITION 2.5.– Let A be a process with integrable variation in the wide sense

and H be a bounded measurable process. Then the following integrals are defined,

finite and∫
Ω×R+

H dμA = E(H ·A∞).

EXERCISE 2.26.– Prove proposition 2.5.

Using the Doléans measure, it is easy to characterize those processes in A that are

martingales. Before we state the result, let us make a trivial remark that will be used

many times below without explanation. For A ∈ A , we have A∗
∞ � Var (A)∞ ∈

L1, Hence, every local martingale in A is a uniformly integrable martingale and,

moreover, belongs to H 1.

THEOREM 2.13.– A process A ∈ A is a martingale if and only if μA(B) = 0 for

every B ∈ P .

PROOF.– To prove the sufficiency, it is enough to note that sets B = C×]s, t], C ∈
Fs, 0 � s < t, are predictable, so μA(B) = 0 implies

μA(B) = E C(At −As) = 0,

which signifies that E(At|Fs) = As a.s.

Let A ∈ A ∩ M . In view of the remark before the theorem, EA∞ = EA0 = 0,

i.e. μA(Ω × R+) = 0. It follows from the above formula that μA vanishes on sets of

the form B = C×]s, t], C ∈ Fs, 0 � s < t. It is also obvious that μA(B) = 0 if

B has the form B = C × {0}, C ∈ F0. Sets B of two indicated forms constitute

a π-system generating the σ-algebra P (theorem 1.10). It remains to note that the

collection of sets on which a signed measure vanishes, satisfies conditions 2) and 3)

in the definition of a λ-system, and then to use theorem A.2 on π-λ-systems. �

THEOREM 2.14.– Let A and A′ be the processes with integrable variation. If μA(B) =
μA′(B) for every B ∈ O, then A and A′ are indistinguishable.

THEOREM 2.15.– Let A and A′ be the predictable processes with integrable variation.

If μA(B) = μA′(B) for every B ∈ P, then A and A′ are indistinguishable.
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The following important result is an immediate consequence of theorems 2.15 and

2.13.

COROLLARY 2.10.– A predictable martingale in A is indistinguishable with the zero

process.

The proof of theorems 2.14 and 2.15 is based on the following lemma, whose

proof is given after we prove the theorems. For brevity, hereinafter we say that M =
(Mt) is a martingale associated with a bounded random variable ξ if M is a bounded

martingale such that Mt = E(ξ|Ft) a.s. for every t ∈ R+.

LEMMA 2.3.– Let A ∈ A , ξ a bounded random variable, M a bounded martingale

associated with ξ, T a stopping time. Then

EξAT = E(M ·AT ). [2.23]

If, moreover, A is predictable, then

EξAT = E(M− ·AT ). [2.24]

PROOF OF THEOREM 2.14.– Take any t ∈ R+ and an arbitrary set B ∈ F . Let M
be a martingale associated with B . It follows from [2.23] and proposition 2.5 that

E BAt = E(M ·At) = E(M [0.t] ·A∞) =

∫
Ω×R+

M [0.t] dμA.

Similarly,

E BA
′
t =

∫
Ω×R+

M [0.t] dμA′ .

Since signed measures μA and μA′ coincide on the optional σ-algebra, integrals

of arbitrary optional functions with respect to these measures also coincide. Hence,

E BAt = E BA
′
t. Since B ∈ F is arbitrary, we have At = A′

t a.s., i.e. A and

A′ are modifications of each other. Indistinguishability of A and A′ follows from

proposition 1.1. �

PROOF OF THEOREM 2.15.– This is similar to the proof of theorem 2.14. We should

only use [2.24] instead of [2.23], which allows us to replace the optional process M
by the predictable process M− in the displayed formulas. �
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PROOF OF LEMMA 2.3.– Let us first prove [2.23] assuming that A ∈ A + and T ≡
t ∈ R+. Since M is bounded and right-continuous, P-a.s.,

M ·At = lim
n→∞

n∑
k=1

M k
n t

(
A k

n t −A k−1
n t

)
by the Lebesgue dominated convergence theorem. Using this theorem again, we get

E(M ·At) = lim
n→∞

n∑
k=1

E
{
M k

n t

(
A k

n t −A k−1
n t

)}
= lim

n→∞

n∑
k=1

E
{
E
(
ξ
∣∣F k

n t

)(
A k

n t −A k−1
n t

)}
= lim

n→∞

n∑
k=1

E
(
ξ
(
A k

n t −A k−1
n t

))
= EξAt.

Now we prove [2.24] under the same assumptions as before and, additionally, for

a predictable A. In view of [2.23], it is sufficient to check that E(ΔM) · At = 0.

By theorem 1.18, there is a sequence {Tn} of predictable stopping times, exhausting

jumps of A, i.e. such that �Tn� ∩ �Tm� = ∅ for m 
= n and {ΔA 
= 0} = ∪n�Tn�.

Since, for a fixed ω, the function t � ΔMt(ω) takes at most a countable number of

values, we have, P-a.s.,

(ΔM) ·At =
∞∑

n=1

ΔMTnΔATn {Tn�t}.

Applying the dominated convergence theorem, proposition 1.11 and theorem 2.4,

we get

E(ΔM) ·At =
∞∑

n=1

E
{
ΔMTn

ΔATn {Tn�t}
}

=
∞∑

n=1

E
{
ΔATn {Tn�t}E

(
ΔMTn {Tn<∞}|FTn−

)}
= 0.

Thus, [2.23] and [2.24] are proved in the case where T is identically equal to a

finite t. Passing to the limit as t → ∞ and using the dominated convergence theorem,

we get the result for T ≡ ∞. If T is an arbitrary stopping time, we apply the statement

we have just proved (with T ≡ ∞) to the stopped process AT instead of A. Using
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theorem 2.12 (3), we prove [2.23] and [2.24] for an arbitrary T . Finally, the general

case with A ∈ A reduces to the considered case with A ∈ A + due to proposition 2.3.

�

The assumptions that A is optional or predictable were used in the proofs of

theorems 2.14 and 2.15 only through relations [2.23] and [2.24]. Thus, it is natural to

ask whether [2.23] and [2.24] are valid for a broader class of processes with

integrable variation in the wide sense than optional or predictable processes,

respectively. The answer to this question is negative, and it is easy to make sure of

this in the optional case, while the predictable case is more difficult. Let us first

consider the discrete-time case. Then [2.23] and [2.24] are interpreted (for T ≡ n) as

EξAn =

n∑
k=1

E(ξ|Fk)(Ak −Ak−1) [2.25]

and

EξAn =
n∑

k=1

E(ξ|Fk−1)(Ak −Ak−1) [2.26]

respectively, where ξ is an arbitrary bounded random variable. Now it follows from

[2.25] that EξAn = 0 for every bounded random variable ξ satisfying E(ξ|Fn) = 0.

Due to exercise 2.27 given below, this means that An a.s. coincides with an Fn-

measurable random variable (and is Fn-measurable itself if the stochastic basis is

complete). Similarly, it follows from [2.26] that EξAn = 0 for every bounded random

variable ξ satisfying E(ξ|Fn−1) = 0, i.e. An a.s. coincides with an Fn−1-measurable

random variable.

EXERCISE 2.27.– Let (Ω,F ,P) be a probability space, G a sub-σ-algebra of the

σ-algebra F and η be an integrable random variable. Assume that Eηξ = 0 for every

bounded random variable ξ satisfying E(ξ|G ) = 0. Show that η = E(η|G ) P-a.s.

HINT.– Apply the Hahn–Banach theorem.

In the continuous-time case, the statement that [2.23] implies that A is optional, is

proved similarly. We leave the details to the reader as an exercise.

EXERCISE 2.28.– Let A be a process with integrable variation in the wide sense.

Assume that, for every bounded random variable ξ and for every t ∈ R+, [2.23]

holds for T ≡ t, where M is a martingale associated with ξ. Prove that A ∈ A .

With regard to the predictable case, we can prove similarly that if [2.24] holds for

a predictable stopping time T , then AT is FT−-measurable (see details of the proof
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later on). However, this is not enough to prove the predictability of A; see

theorem 1.19. For the time being, let us introduce the following definition.

DEFINITION 2.14.– A process A with integrable variation in the wide sense is called

natural if, for every bounded random variable ξ and for every t ∈ R+,

EξAt = E(M− ·At), [2.27]

where M is a martingale associated with ξ.

The second part of lemma 2.3 says that a predictable process with integrable

variation is natural. As already been mentioned, the converse statement will be

proved later. Historically, the notion of a natural increasing process appeared before

the notion of the predictable σ-algebra.

EXERCISE 2.29.– Show that a natural increasing process is adapted, i.e. belongs to

A +.

Recall that the optional and predictable projections are considered in section 1.6.

PROPOSITION 2.6.– Let A ∈ A +. Then, for every bounded measurable process X,
the optional projection OX is a version of the “conditional expectation” EμA(X|O).
In particular,∫

Ω×R+

(OX) dμA =

∫
Ω×R+

X dμA. [2.28]

If, additionally, A is a natural process, then, for every bounded measurable

process X , the predictable projection ΠX is a version of the “conditional

expectation” EμA(X|P). In particular,∫
Ω×R+

(ΠX) dμA =

∫
Ω×R+

X dμA. [2.29]

REMARK 2.8.– “Conditional expectations” EμA(X|O) and EμA(X|P) (we use the

quotes because μA is a finite measure but not, in general, a probability measure) are

defined up to μA-null sets. These include evanescent sets, however, the class of μA-

null sets is much wider. For example, let A = �T,∞�, where T is a stopping time.

Then μA(B) = 0 means that the set B∩�T � is evanescent. That is why the projections

cannot be defined as the corresponding conditional expectations.

PROOF.– We prove only the second statement; the optional case is handled similarly.

We must prove that, for every bounded measurable process X and for every B ∈ P ,∫
Ω×R+

(ΠX) B dμA =

∫
Ω×R+

X B dμA.
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Since B can be put under the sign of predictable projection because of the third

equality in [1.8], it is enough to consider the case where B = Ω, i.e. to check that

[2.29] holds for every bounded measurable process X .

Now we can see that [2.27] in the definition of a natural process means that [2.29]

is valid for processes X of the form X = ξ [0,t], where ξ is a bounded random

variable; see the expression for ΠX for such X in the proof of theorem 1.21.

Let H be the set of bounded measurable processes X for which [2.29] is true.

Clearly, H is a linear space and contains constant functions. If

0 � X1 � . . . � Xn � . . . � C, Xn ∈ H and X = limn X
n, then, as we know

from the proof of theorem 1.21, ΠX = limn ΠXn up to an evanescent set.

Therefore, by the Lebesgue dominated convergence theorem, we can pass to the limit

under the integral signs in [2.29] for Xn as n → ∞. Hence, X ∈ H . Now the claim

follows from theorem A.3 on monotone classes. �

Now we can prove the desired result.

THEOREM 2.16.– A natural process with integrable variation in the wide sense is

predictable.

PROOF.– The proof is based on theorem 1.19. Let A be a natural process with

integrable variation in the wide sense.

Let T be a predictable stopping time, and let ξ be a bounded random variable such

that E(ξ|FT−) = 0. Consider a bounded martingale M associated with ξ. We assert

that M− �0,T � = 0.

Indeed, let B ∈ Ft and t ∈ R+. Then B ∩ {t < T} ∈ FT− ∩ Ft. Hence,∫
B

Mt {t<T} dP =

∫
E(ξ|Ft) B {t<T} dP =

∫
ξ B {t<T} dP

=

∫
E(ξ|FT−) B {t<T} dP = 0.

Therefore, Mt {t<T} = 0 a.s. and, for ω from a set of measure one,

Mt(ω) {t<T (ω)} = 0 simultaneously for all nonnegative rational t. Since trajectories

M·(ω) are right-continuous, we conclude that the process M �0,T � is

indistinguishable with the zero process. Hence, M− �0,T � {T>0} is

indistinguishable with the zero process. It remains to note that

M0 = E(ξ|F0) = E
(
E(ξ|FT−)|F0

)
= 0 a.s.

Put X := ξ �0,T �. Then

ΠX = Π(ξ [0,∞[) �0,T � = M− �0,T � = 0.



76 Stochastic Calculus for Quantitative Finance

By [2.29], we get

0 =

∫
Ω×R+

X dμA = EξAT .

According to exercise 2.27, the random variable AT is FT−-measurable.

Let S be a totally inaccessible stopping time and B ∈ FS . Put X = �SB�. It

follows from the definitions of predictable projection and totally inaccessible stopping

time that ΠX = 0. Using [2.29], we get

0 =

∫
Ω×R+

X dμA = EΔAS {S<∞} B .

Since the random variable ΔAS {S<∞} is FS-measurable, we obtain

P(S < ∞, ΔAS 
= 0) = 0. �

THEOREM 2.17.– Let μ be a finite measure on the σ-algebra P such that μ(�0�) = 0
and μ(B) = 0 if B is evanescent. Then there exists a predictable increasing process

A ∈ A + such that its Doléans measure coincides with μ on P .

PROOF.– Take t ∈ R+ and B ∈ Ft. Let M = (Mt)t∈R+
be a bounded martingale

associated with B . Define

νt(B) =

∫
Ω×R+

M− �0,t� dμ.

Since μ vanishes on evanescent sets, the expression on the right does not depend on

the choice of a version of M . It is obvious that νt is finitely additive on Ft. To prove

that it is countably additive, let us check that it is continuous at ∅. Let Bn ∈ Ft,

B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ . . . , ∩nBn = ∅, and let Mn be martingales associated

with Bn; without loss of generality, we may assume that 1 � M1
s (ω) � M2

s (ω) �
. . . � Mn

s (ω) � . . . � 0 for all ω and s. By Doob’s inequality (corollary 2.6 and

remark 2.5)

E
(
(Mn)∗∞

)2 � 4E|Mn
∞|2 = 4P(Bn) → 0, n → ∞.

Hence, (Mn)∗∞
P−→ 0 and, since the sequence Mn is monotonic in n,

(Mn)∗∞ → 0 a.s. Thus, we have the monotone convergence of the sequence

Mn
− �0,t� to a process indistinguishable with zero process. Therefore, νt(Bn) → 0

by the monotone convergence theorem, and we conclude that νt is a finite measure

on Ft.
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Obviously, νt is absolutely continuous with respect to the restriction Pt of P onto

Ft. Put

A′
t :=

dνt
dPt

.

By the definition, A′
t is an Ft-measurable nonnegative random variable and EA′

t =
μ(�0, t�). In particular, A′

0 = 0 a.s. Moreover, for every bounded Ft-measurable

random variable ξ,

EξA′
t =

∫
Ω

ξ dνt =

∫
Ω×R+

N− �0,t� dμ, [2.30]

where N is a martingale associated with ξ. Indeed, [2.30] holds for indicator functions

and, hence, for their linear combinations, from the definition of A′
t. Then it is proved

for nonnegative bounded ξ by passing to a limit in monotone sequences of linear

combinations of indicators similarly to the proof of continuity of νt at ∅. Finally, use

the decomposition ξ = ξ+ − ξ− in the general case.

Let 0 � s < t, B ∈ Ft, and let M be a martingale associated with B as above.

Then

E BA
′
t =

∫
Ω×R+

M− �0,t� dμ

by the definitions and

E BA
′
s = E

[
E( B |Fs)A

′
s

]
=

∫
Ω×R+

M− �0,s� dμ

in view of [2.30]. Here we use that a martingale N associated with ξ = E( B |Fs) is

indistinguishable with M on �0, s�. Therefore, E B(A
′
t−A′

s) � 0 for every B ∈ Ft,

hence

A′
t � A′

s a.s. [2.31]

Put, for t ∈ R+,

A′′
t = inf

r∈Q : r>t
A′

r.
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By the construction, for every ω, the function t � A′′
t (ω) takes nonnegative

values, is nondecreasing and right-continuous. Next, for every t ∈ R+, we have

A′′
t � A′

t a.s. in view of [2.31]. However,

EA′′
t � inf

r∈Q : r>t
EA′

r = inf
r∈Q : r>t

μ(�0, r�) = μ(�0, t�) = EA′
t.

Hence, A′′
t = A′

t a.s. In particular, A′′
t are Ft-measurable and A′′

0 = 0 a.s.

Now define

At := A′′
t {A′′

0 =0}, t ∈ R+.

It follows from the above listed properties of the process A′′ that A = (At)t∈R+ ∈
V +. Moreover, A ∈ A + because, for every t ∈ R+,

EAt = EA′′
t = EA′

t = μ(�0, t�) � μ(�0,∞�).

Let 0 � s < t, B ∈ Fs, and let M be a martingale associated with B . Then M
is indistinguishable with B on �s,∞� and, hence, M− is indistinguishable with B

on �s,∞�. Therefore,

μA(B×]s, t]) = E B(At −As) = E B(A
′
t −A′

s)

=

∫
Ω×R+

M− ]s,t] dμ = μ(B×]s, t]).

That μA and μ coincide on P now follows from theorem 1.10 and from

theorem A.2 on π-λ-systems.

Due to theorem 2.16, it remains to prove that A is a natural process. Let t ∈ R+,

ξ be a bounded random variable, and let M be a martingale associated with ξ. Then

a martingale N associated with a random variable Mt is indistinguishable with M on

�0, t�. Therefore,

EξAt = EMtAt = EMtA
′
t =

∫
Ω×R+

M− �0,t� dμ

=

∫
Ω×R+

M− �0,t� dμA = E(M− ·At). �
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It follows from proposition 2.6 and theorem 2.16 that, for every bounded

measurable process X and for every predictable A ∈ A ,∫
Ω×R+

(ΠX) dμA =

∫
Ω×R+

X dμA.

It turns out that it is possible to “change the roles” of X and A.

PROPOSITION 2.7.– Let A be a process with integrable variation in the wide sense.

There exists a unique (up to indistinguishability) predictable process B ∈ A such that∫
Ω×R+

X dμA =

∫
Ω×R+

X dμB [2.32]

for every bounded predictable process X . This process is called the dual predictable
projection of A and denoted by Aπ .

COROLLARY 2.11.– Let A ∈ A +. There exists a unique (up to indistinguishability)

predictable increasing process Ã ∈ A + such that A− Ã ∈ M .

PROOF OF PROPOSITION 2.7.– Relation [2.32] means that the Doléans measures of

the processes A and B coincide on the predictable σ-algebra P . Hence, the

uniqueness follows from theorem 2.15, and the existence, in the case where A is an

integrable increasing process in the wide sense, follows from theorems 2.17 and 2.16.

The existence in the general case follows from the decomposition in proposition 2.3.

�

DEFINITION 2.15.– The dual predictable projection Aπ of a process A ∈ A with

integrable variation is also called the compensator of A and often denoted by Ã.

LEMMA 2.4.– Let A ∈ A +, and let Ã be the compensator of A. Then, for every

predictable stopping time T,

E(ΔAT {T<∞}|FT−) = ΔÃT {T<∞}.

In other words, the assertion of the lemma can be formulated as follows:

Π(ΔA) = ΔÃ,

see theorem 1.22 and remark 1.8.

PROOF.– Since A − Ã is a uniformly integrable martingale, see corollary 2.11, the

claim follows from theorem 2.4. �



80 Stochastic Calculus for Quantitative Finance

THEOREM 2.18.– Let A ∈ A +. The compensator Ã of A is a.s. continuous if and

only if ΔAT {T<∞} = 0 a.s. for every predictable stopping time T .

PROOF.– The necessity is evident because of lemma 2.4. To prove the sufficiency, let

us use theorem 1.18 to represent the set {ΔÃ > 0} as the union of the graphs of

predictable stopping times Tn. Then, on the one hand, ΔÃTn > 0 on the set {Tn <

∞}. On the other hand, due to the assumption and by lemma 2.4, ΔÃTn {Tn<∞} = 0

a.s. Therefore, P(Tn < ∞) = 0 for every n, hence the set {ΔÃ > 0} is evanescent.

�

EXERCISE 2.30.– Let X = (Xt)t∈R+ be a Poisson process on a stochastic basis

(Ω,F ,F,P). Put Tn := inf {t : Xt � n}. Show that Tn is a totally inaccessible

stopping time for every n.

HINT.– Apply theorem 2.18 to the process XTn .

EXERCISE 2.31.– Let μ be a finite measure on the σ-algebra F ⊗ B(R+) of

measurable sets such that μ(�0�) = 0 and μ(B) = 0 if B is evanescent. Prove that

there exists an integrable increasing process in the wide sense A such that μA = μ.

Now we formulate a result dealing with the optional case which is not used later.

The proof is omitted. It is similar to the proof of theorem 2.17, with M− replaced

by M in the definition of νt. However, that μA and μ coincide on O is proved more

difficult because there is no convenient characterization of the optional σ-algebra O
similar to that of predictable σ-algebra from theorem 1.10.

THEOREM 2.19.– Let μ be a finite measure on the σ-algebra O such that μ(�0�) = 0
and μ(B) = 0 if B is evanescent. Then there exists an increasing process A ∈ A +

such that its Doléans measure coincides with μ on O .

EXERCISE 2.32.– Prove theorem 2.19.

HINT.– Follow the scheme suggested above. To prove that μ and μA coincide on O ,

show with the use of theorem A.3 on monotone classes, that∫
(OX) dμ =

∫
(OX) dμA for every bounded measurable process X .

PROPOSITION 2.8.– Let A be a process with integrable variation in the wide sense.

There exists a unique (up to indistinguishability) process B ∈ A such that∫
Ω×R+

X dμA =

∫
Ω×R+

X dμB . [2.33]

for every bounded optional process X . This process is called the dual optional
projection of A and denoted by Ao.
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PROOF.– This is similar to the proof of proposition 2.7. �

EXERCISE 2.33.– Let A be a process with integrable variation in the wide sense and

H a measurable bounded process. Show that, up to indistinguishability,

if H is an optional process, then (H ·A)o = H ·Ao;

if H is a predictable process, then (H ·A)π = H ·Aπ;

if A is an optional process, then (H ·A)o = (OH) ·A;

if A is a predictable process, then (H ·A)π = (ΠH) ·A.

HINT.– Use exercise 2.35 below.

EXERCISE 2.34.– Let A be a process with integrable variation in the wide sense. Show

that, for every bounded random variable ξ and for every t ∈ R+,

EξAo
t = lim

n→∞E

[
ξ

n∑
k=1

E
(
A k

n t −A k−1
n t

∣∣∣F k
n t

)]
,

EξAπ
t = lim

n→∞E

[
ξ

n∑
k=1

E
(
A k

n t −A k−1
n t

∣∣∣F k−1
n t

)]
.

EXERCISE 2.35.– Let A be a process with integrable variation in the wide sense, H a

measurable process and E(|H| ·Var (A)∞) < ∞. Show that, μA-a.s.,

dμH·A
dμA

= H.

THEOREM 2.20.– Let A, B ∈ V (respectively A, B ∈ V +) and dB·(ω) � dA·(ω)
for almost all ω. Then there exists an optional (respectively a nonnegative optional)

process H such that the processes B and H · A are indistinguishable. If A and B are

predictable, then the process H can be chosen predictable.

PROOF.– We first prove the theorem under the assumption that A, B ∈ A +. Let C
be a measurable set such that μA(C) = 0. Then C ·A∞ = 0 a.s. It follows from the

conditions of the theorem that C · B∞ = 0 a.s. Hence, μB(C) = 0 and, therefore,

μB � μA. A fortiori, the absolute continuity persists if we consider the restrictions of

these measures on the optional or predictable σ-algebra.

By the Radon–Nikodým theorem applied to the space (Ω × R+,O) and the

measures μA|O and μB |O , there exists an optional process H such that
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μB(C) =
∫
C
H dμA for every C ∈ O . Combining this relation with Exercise 2.35,

we obtain that the Doléans measures of the processes H · A and B coincide on the

σ-algebra O . By theorem 2.14, the processes H ·A and B are indistinguishable.

If, additionally, A and B are predictable, then one should modify the previous

reasoning. Namely, we apply the Radon–Nikodým theorem to the measurable space

(Ω × R+,P) and the measures μA|P , μB |P , which gives us a predictable process

H such that μB(C) =
∫
C
H dμA for every C ∈ P . Exercise 2.35 gives now that the

Doléans measures of the processes H ·A and B coincide on the σ-algebra P , and, by

theorem 2.15, the processes H ·A and B are indistinguishable.

Now let A, B ∈ V +. Put T0 := 0, Tn := inf {t : At + Bt � n}. By

proposition 1.10 (2), Tn is a stopping time and, moreover, it is predictable if A and B
are predictable, see exercise 1.19. It is also clear that Tn ↑ +∞. Define the processes

An := �Tn−1,Tn� ·A, Bn = �Tn−1,Tn� ·B.

Since An + Bn � n, we have An, Bn ∈ A +; if A and B are predictable, then

An and Bn are predictable. It is also obvious that dBn
· (ω) � dAn

· (ω) for almost all

ω. The first part of the proof yields nonnegative optional (predictable if A and B are

predictable) processes Hn such that Bn and Hn · An are indistinguishable. Then the

process H :=
∑

n H
n

�Tn−1,Tn� is nonnegative, optional (predictable, if A and B
are predictable) and B = H ·A up to an evanescent set.

The case, where A ∈ V + and B ∈ V , can be easily reduced to the considered

case due to proposition 2.3.

Finally, let us consider the general case, where A, B ∈ V . According to what has

been proved, there is an optional (a predictable if A is predictable) process K such

that A = K · Var (A) up to indistinguishability. Then Var (A) = |K| · Var (A) up

to indistinguishability, hence, {|K|
=1} · Var (A)∞ = 0 a.s. Put J = K {|K|=1} +

{|K|
=1}. The process J takes values ±1, is optional (predictable if A is predictable),

and it follows from the previous relation that the processes K ·Var (A) and J ·Var (A)
are indistinguishable. Therefore, A = J ·Var (A) up to indistinguishability.

Using what has been proved in the previous case, there exists an optional (a

predictable if A and B are predictable) process H ′ such that B = H ′ · Var (A) up to

indistinguishability. It remains to put H := H ′/J . �

2.5. Locally integrable increasing processes and processes with locally integrable
variation

Unless otherwise stated, we will assume that a stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) satisfying the usual conditions is given.
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DEFINITION 2.16.– A process with finite variation A = (At)t∈R+ ∈ V is called a

process with locally integrable variation if there is a localizing sequence {Tn} of

stopping times such that ATn ∈ A for every n, i.e. the stopped process ATn is a

process with integrable variation. An increasing process with locally integrable

variation is called a locally integrable increasing process. The class of all processes

with locally integrable variation is denoted by Aloc, and the class of all locally

integrable increasing processes is denoted by A +
loc.

It is clear that

A ⊆ Aloc ⊆ V , A + ⊆ A +
loc = Aloc ∩ V + ⊆ V +,

Aloc = A +
loc − A +

loc.

It is obvious from the definition that the process A ∈ V lies in Aloc if and only

if Var (A) ∈ A +
loc, and that the classes Aloc and A +

loc are stable under stopping.

The first part of lemma 2.1 allows us to check trivially that Aloc is a linear space. “By

localization” (i.e. applying the second part of lemma 2.1, see the proof of theorem 2.7),

we can prove that A ∈ Aloc (respectively A ∈ A +
loc) if A ∈ V (respectively A ∈ V +)

and there is a localizing sequence {Tn} of stopping times such that ATn ∈ Aloc

(respectively ATn ∈ A +
loc) for every n. Symbolically, Aloc = (Aloc)loc, A +

loc =
(A +

loc)loc.

The following two important lemmas provide sufficient conditions for a process

from V to be in Aloc.

LEMMA 2.5.– Let A ∈ V and A be predictable. Then A ∈ Aloc.

PROOF.– The process B := Var (A) is predictable. Put Tn := inf {t : Bt � n}. Then

Tn > 0, limn→∞ Tn = +∞, and, due to exercise 1.19, Tn is a predictable stopping

time. Let (S(n, p))p∈N be a foretelling sequence of stopping times for Tn. Choose pn
such that

P(S(n, pn) < Tn − 1) � 2−n,

and put Sn = maxm�n S(m, pm). Then Sn < maxm�n Tm = Tn, hence, BSn � n,

hence BSn ∈ A +. Moreover, the sequence (Sn) is increasing and P(Sn < Tn−1) �
2−n. Therefore, by the Borel–Cantelli lemma, for almost all ω, there is a number

n(ω) such that Sn(ω) � Tn(ω)− 1 if n � n(ω). Thus, (Sn) is a localizing sequence.

Consequently, B ∈ A +
loc. �

LEMMA 2.6.– Let M ∈ V ∩ Mloc. Then M ∈ Aloc.
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PROOF.– Let (Sn) be a localizing sequence for M as an element of Mloc, i.e. MSn ∈
M for every n. Put Tn := Sn ∧ inf {t : Bt � n}, where B := Var (M). It is clear

that Tn ↑ ∞ a.s. We have, for every t ∈ R+,

ΔBt = |ΔMt| � |Mt|+ |Mt−| and |Mt−| � Bt−.

Therefore,

BTn {Tn<∞} = BTn− {Tn<∞} +ΔBTn {Tn<∞}

� 2BTn− {Tn<∞} + |MTn | {Tn<∞} � 2n+ |MTn | {Tn<∞},

hence BTn � 2n + |MTn |. It remains to note that the random variable MTn = MSn

Tn

is integrable by theorem 2.4. �

Before we turn to the main result of this section, we formulate and prove a

technical assertion which will be used several times in the rest of the book.

Let a localizing sequence {Tn} of stopping times and a sequence {Xn} of

measurable stochastic processes be given. Define Sn as the restriction of Tn on the

set A := {ω : limn Tn(ω) = ∞}; since P(A) = 1, we have A ∈ FTn for every n,

hence, Sn is a stopping time by proposition 1.5. Clearly

S1(ω) � S2(ω) � . . . � Sn(ω) � . . . and lim
n

Sn(ω) = ∞.

for all ω. Now define the process X recursively, putting, for all t ∈ R+ and ω,

Xt(ω) =

⎧⎪⎪⎨⎪⎪⎩
X1

t (ω),
if t ∈ [0, S1(ω)];

XSn−1(ω)(ω) +
(
Xn

t (ω)−Xn
Sn−1(ω)(ω)

)
,

if t ∈]Sn−1(ω), Sn(ω)], n = 2, 3, . . . .

[2.34]

It is easy to see that, equivalently, X can be written as:

X = X1
0 +

∞∑
n=1

[
(Xn)Sn − (Xn)Sn−1

]
, [2.35]

where S0 = 0. Only finite number of terms do not equal zero in this sum for every ω
and t, namely, corresponding to n such that Sn−1(ω) < t. Hence, X is a measurable

stochastic process. We will say that X given by [2.34] or [2.35] is obtained by the

“gluing” procedure from {Xn}, {Tn}.

Some properties of “gluing” are described in the following proposition.
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PROPOSITION 2.9.– Let X be obtained by the “gluing” procedure from {Xn}, {Tn},
where {Tn} is a localizing sequence of stopping times and {Xn} is a sequence of

measurable processes. Then:

1) if all Xn are càdlàg (respectively continuous), then X is càdlàg (respectively

continuous);

2) if all Xn are progressively measurable (respectively optional, respectively

predictable), then X is progressively measurable (respectively optional, respectively

predictable);

3) if Xn ∈ Mloc for all n, then X ∈ Mloc;

4) if Xn ∈ V (respectively Xn ∈ V +) for all n, then X ∈ V (respectively

X ∈ V +);

5) if (Xn)Tn−1 and (Xn−1)Tn−1 are indistinguishable for every n = 2, 3, . . . ,
then XTn and (Xn)Tn are indistinguishable for every n = 1, 2, . . . .

PROOF.–

The proof (1) is obvious from [2.34], and (2) follows trivially from [2.35] and

proposition 1.9. It follows from [2.35] that XSk = X1
0+

∑k
n=1

[
(Xn)Sn−(Xn)Sn−1

]
,

hence, under assumption (3), XSk ∈ Mloc for every k, and the claim follows from

theorem 2.7. Assertion (4) is evident in view of [2.34]. Let assumptions in (5) be

satisfied. Then Xn
· (ω) and Xn−1

· (ω) coincide on [0, Sn−1(ω)]. By induction on n, it is

proved from [2.34] that, for ω ∈ B, Xt(ω) = Xn
t (ω) for all t ∈ [0, Sn(ω)]. Therefore,

XSn and (Xn)Sn are indistinguishable, hence XTn and (Xn)Tn are indistinguishable.

�

The next theorem is the main result of this section.

THEOREM 2.21.–

1) Let A ∈ V . The following two statements are equivalent:

a) A ∈ Aloc;

b) there exists a predictable process Ã ∈ V such that A− Ã ∈ Mloc.

Such a process Ã (if it exists) is unique up to indistinguishability and called the

compensator of A. If A ∈ A +
loc, then the compensator Ã can be chosen in V +.

2) Let A ∈ Aloc, Ã being the compensator of A, H ∈ Lvar(A), and H ·A ∈ Aloc.

Then H ∈ Lvar(Ã), H · Ã ∈ Aloc, and H ·A−H · Ã ∈ Mloc.

3) Let A ∈ A +
loc, B ∈ V +, and let B be predictable. The following statements are

equivalent:
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c) B is a compensator of A;

d) EAT = EBT for every stopping time T ;

e) E

∞∫
0

Ht dAt = E

∞∫
0

Ht dBt

for every nonnegative predictable process H .

REMARK 2.9.– If A is a process with integrable variation, the definition of its

compensator given in theorem 2.21 coincides with the previous definition in

section 2.4.

REMARK 2.10.– As example 2.3 below shows, the assumption H · A ∈ Aloc in

assertion (2) is essential. In general, it cannot be replaced by the assumption

H ∈ Lvar(Ã) alone or combined with H · Ã ∈ Aloc. Nevertheless, it should be noted

that, as follows from assertion (3) of the theorem, for A ∈ V +, the assumptions

H ∈ Lvar(Ã) and H · Ã ∈ Aloc imply H ∈ Lvar(A) and H ·A ∈ Aloc.

It follows from theorems 2.21 and 2.10 that lemma 2.4 and theorem 2.18 are valid

for locally integrable increasing processes.

COROLLARY 2.12.– If A ∈ Aloc, then, for every predictable stopping time T, a.s.,

E
(|ΔAT | {T<∞}

∣∣FT−
)
< ∞

and

E
(
ΔAT {T<∞}

∣∣FT−
)
= ΔÃT {T<∞},

where Ã is a compensator of A.

COROLLARY 2.13.– Let A ∈ A +
loc. The compensator Ã of A is a.s. continuous if and

only if ΔAT {T<∞} = 0 a.s. for every predictable stopping time T .

EXAMPLE 2.3 (Émery).– Let S and η be independent random variables on a complete

probability space. It is assumed that S(ω) > 0 for all ω and S has the exponential

distribution: P(S > t) = e−t, t ∈ R+, while P(η = ±1) = 1/2. Put

Xt =

{
0, if t < S,

η/S, if t � S,
At =

{
0, if t < S,

η, if t � S,
Ht =

1

t
{t>0}.

Put F 0
t = σ{Xs, s � t}, F0 = (F 0

t )t∈R+ , and define a filtration F on (Ω,F ,P)

by F :=
(
F0+

)P
; see exercises 1.2–1.4. Then A ∈ Aloc ∩ Mloc, H ∈ Lvar(A) and

H ·A = X ∈ V , but X /∈ Aloc and X /∈ Mloc.
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EXERCISE 2.36.– Show that A ∈ Mloc, X /∈ Aloc, and X /∈ Mloc in example 2.3.

HINT.– Show that E|XT | = ∞ for every stopping time T with P(T > 0) > 0. To do

so, find a characterization of stopping times, similar to that in exercise 1.32.

PROOF OF THEOREM 2.21.– (1) If (b) holds, then, by lemmas 2.5 and 2.6, Ã ∈ Aloc

and A− Ã ∈ Aloc. Therefore, A ∈ Aloc.

Let A ∈ Aloc. Take a localizing sequence (Tn) such that ATn ∈ A for all n. By

corollary 2.11, there exists a compensator of An := ATn , i.e. a predictable process

Ãn ∈ A such that An − Ãn ∈ M (moreover, Ãn ∈ A + if A ∈ V +). Note that(
ATn

)Tn−1
= ATn−1 . This implies, in view of the uniqueness in corollary 2.11, that

Ãn =
(
Ãn

)Tn
and

(
Ãn

)Tn−1
= Ãn−1 =

(
Ãn−1

)Tn−1
up to indistinguishability.

Let Ã be obtained from {Ãn}, {Tn} by the “gluing” procedure. Owing to

proposition 2.9, we have: Ã ∈ V , Ã is predictable, Ã ∈ V + if A ∈ V +, and ÃTn is

indistinguishable with Ãn, hence ATn − ÃTn ∈ M . Thus, A− Ã ∈ Mloc.

It remains to prove the uniqueness of the compensator. If Ã and Ã′ satisfy the

definition of the compensator, then the process B := Ã − Ã′ ∈ V ∩ Mloc and

is predictable. By lemma 2.5 (or 2.6), there is a localizing sequence (Tn) such that

BTn ∈ A . By corollary 2.10, BTn is indistinguishable with the zero process for

every n.

(3) Assertion (d) is a special case of assertion (e) with H = �0,T �, so implication

(e)⇒(d) is obvious.

Let us prove (d)⇒(c). Put M := A − B. Let a localizing sequence (Tn) be such

that ATn ∈ A +, then BTn ∈ A + in view of (d). Hence, MTn ∈ A ; moreover, for

every stopping time T ,

EMTn

T = E(ATn∧T −BTn∧T ) = 0

because of (d). Write this relation for T = s B + t Ω\B and T = t, where s < t
and B ∈ Fs, then subtract the obtained relations from each other. As a result, we get

E(MTn
t −MTn

s ) B = 0, hence, MTn ∈ M and M ∈ Mloc.

It remains to check implication (c)⇒(e). Let us take a common localizing

sequence (Tn) for A ∈ Aloc and B ∈ Aloc (which is possible by lemma 2.1 (1)).

Then MTn ∈ M for every n because of (c), where M is defined as above. Therefore,

by theorem 2.13, the Doléans measures of the processes ATn and BTn coincide on
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the σ-algebra P . Hence, integrals of predictable functions coincide as well: for

nonnegative predictable H ,

E

∞∫
0

Hs {Hs�n} �0,Tn� dAs =

∫
Ω×R+

H {H�n} dμATn

=

∫
Ω×R+

Hs {Hs�n} dμBTn = E

∞∫
0

H {H�n} �0,Tn� dBs.

It remains to pass to the limit as n → ∞ in terms on the left and on the right in

the above relation. We use the theorem on monotone convergence, first, for the inner

Lebesgue–Stieltjes integrals, then for the external integrals with respect to P.

(2) Let A = B − C be the decomposition of A from proposition 2.3. Since

Var (H ·A) = |H| ·Var (A) = H+ ·B +H+ · C +H− ·B +H− · C,

each of the processes H+ ·B, H+ ·C, H− ·B, H− ·C is locally integrable and, hence,

has a compensator. Due to implication (c)⇒(e) from assertion (3), we have, for every

stopping time T ,

E

∞∫
0

H+
s �0,T � dBs = E

∞∫
0

H+
s �0,T � dB̃s,

where B̃ is the compensator of B. The left side of this equality is finite for T = Tn,

where (Tn) is a localizing sequence for H+ · B, and it follows that H+ ∈ Lvar(B̃).

Moreover, H+ · B̃ is the compensator of H+ · B by implication (d)⇒(c) from

assertion (3), i.e. H+ · B − H+ · B̃ ∈ Mloc. Applying the same arguments to

processes H+ · C, H− ·B, H− · C, we get H ·A−H · Ã ∈ Mloc.

The theorem has been proved. �

For ease of reference, we state an assertion equivalent to the uniqueness of the

compensator.

COROLLARY 2.14.– A predictable local martingale with finite variation is

indistinguishable with the zero process.

Some properties of the compensator are formulated in the next proposition. A tilde

over a process signifies its compensator.
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PROPOSITION 2.10.–

1) If A ∈ V is predictable, then Ã = A.

2) If A ∈ Aloc and T is a stopping time, then ÃT = ÃT .

3) If A ∈ Aloc, then A ∈ Mloc if and only if Ã = 0.

4) If M ∈ Mloc ∩ V , H ∈ Lvar(M), and H · M ∈ Aloc, then H · M ∈ Mloc.

In particular, if M ∈ Mloc ∩ V and H is a locally bounded predictable process, then

H ·M ∈ Mloc.

5) If M ∈ Mloc ∩ V and At =
∑

0<s�t ΔMs, then A = (At) ∈ Aloc, the

compensator Ã has a continuous version, and M = A− Ã.

Equalities in (1)–(3) are assumed up to an evanescent set.

Assertion (4) says that the Lebesgue–Stieltjes integral H · M of a predictable

function H with respect to a local martingale M with finite variation is a local

martingale but only under the assumption that H ·M ∈ Aloc; see example 2.3.

Assertion (5) means that a local martingale with finite variation is the compensated

sum of its jumps.

PROOF.– Assertions (1)–(3) are obvious, and (4) follows from theorem 2.21 (2). Let

us prove (5). Since Var (A) � Var (M), we have A ∈ Aloc. Next, the process A−M
belongs to V and is continuous, in particular, A−M is predictable. Since A− (A−
M) = M , it follows from the definition of compensator that A−M is the compensator

of A. �

LEMMA 2.7.– Let M ∈ Mloc. Then (M −M0)
∗ ∈ A +

loc and (ΔM)∗ ∈ A +
loc.

PROOF.– It is evident that trajectories of (M −M0)
∗ and (ΔM)∗ are monotone, and

their right-continuity follows from right-continuity of M . Both processes are adapted

because M is adapted and right-continuous. By theorem 2.7, there is a localizing

sequence (Tn) such that MTn ∈ H 1, i.e. EM∗
Tn

< ∞ for every n. It remains to note

that (M −M0)
∗ � 2M∗ and (ΔM)∗ � 2M∗. �

THEOREM 2.22 (the Gundy decomposition).– Every local martingale M has a

decomposition M = M1 + M2, where M1 and M2 are local martingales, jumps

ΔM1 are uniformly bounded, and M2 ∈ V .

PROOF.– Put

At =
∑

0<s�t

ΔMs {|ΔMs|>1}.
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It is clear that A = (At) ∈ V . Put Tn := inf {t : Var (A)t � n}, then (Tn) is a

localizing sequence. We have Var (A)Tn � n+(ΔM)∗, where Var (A)Tn ∈ A +
loc by

lemma 2.7. Therefore, A ∈ Aloc.

Now define M2 := A − Ã, where Ã is the compensator of A, and let M1 :=
M −M2. Since ΔM1 = ΔM −ΔA+ΔÃ = ΔM {|ΔM |�1} +ΔÃ, it remains to

prove that absolute values of jumps ΔÃ are bounded by one.

Note that |ΔÃT | {T<∞} � 1 a.s. for every predictable stopping time T . Indeed,

this follows from corollary 2.12 and theorem 2.10:

ΔÃT {T<∞} = E
(
ΔAT {T<∞}

∣∣FT−
)

= E
(
ΔMT {T<∞}

∣∣FT−
)− E

(
ΔMT {|ΔMT |�1} {T<∞}

∣∣FT−
)

= −E
(
ΔMT {|ΔMT |�1} {T<∞}

∣∣FT−
)
.

We can conclude from theorem 1.18 that the set
{|ΔÃT | > 1

}
is evanescent. Now,

replacing Ã by the process Ã − ∑
0<s�· ΔÃ {|ΔÃ|>1}, which is indistinguishable

from Ã, we obtain a version of Ã such that |ΔÃ| � 1 identically. �

EXAMPLE 2.4.– Let us consider the model from exercises 1.27–1.35. Assume that

S(ω) > 0 for all ω and S has the exponential distribution: P(S > t) = e−t. Put

A := �S,∞�. The compensator of the integrable increasing process A is the process

Ã given by Ãt := S ∧ t, see exercise 2.37 below.

Let M be a nonnegative uniformly integrable martingale on the considered

stochastic basis. Assume first that M is bounded. Then

EMS− = E(M− ·A)∞ = E(M− · Ã)∞
(∗)
= EM∞Ã∞ = EM∞S,

where the equality marked by (∗) follows from lemma 2.3. (In fact, the formula above

is valid without the assumption that M is bounded; however, it needs to be justified.)

Now let the martingale M be defined through its terminal value M∞ given by

M∞ := S−2eS {S�1}.

Also define nonnegative martingales Mn by Mn
∞ := M∞ {S�n}. Using what has

been proved, we get

EMS− � EMn
S− = EMn

∞S = ES−1eS {1�S�n}

=

n∫
1

x−1exe−x dx = log n.
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Therefore,

EMS− = ∞.

In particular, M ∈ M but M /∈ H 1.

EXERCISE 2.37.– Show that Ã is the compensator of A in Example 2.4.

HINT.– Use implication (d)⇒(c) from theorem 2.21 (3) and exercise 1.32.

EXERCISE 2.38.– Let X = (Xt)t∈R+ be a Poisson process with intensity 1 on a

stochastic basis (Ω,F ,F,P). Put S := inf {t : Xt � 1}. Find the compensators of X
and XS and compare answers with exercise 2.37.

HINT.– The compensator of X is a deterministic function.

EXERCISE 2.39.– As in example 2.4, consider the model from exercises 1.27–1.35,

but here do not assume that S has the exponential distribution. Put F (t) := P(S � t),
A := �S,∞�,

Ãt :=

S∧t∫
0

dF (s)

1− F (s− 0)
.

Show that the process Ã = (Ãt) is the compensator of A. Show that, if the

distribution of S is continuous, then

Ãt = log
1

1− F (S ∧ t)
.

Let T be a strictly positive totally inaccessible or predictable stopping time. In the

next two lemmas, we provide sufficient conditions on a random variable ξ in order

for there to exist a local martingale M with the jump ξ at T ; more precisely, ξ =
ΔMT {T<∞}. In fact, conditions that we suggest are also necessary: this follows

from lemma 2.7 for totally inaccessible T and from theorem 2.10 for predictable T .

LEMMA 2.8.– Let T be a strictly positive totally inaccessible stopping time and ξ an

FT -measurable random variable vanishing on {T = ∞}. Assume that the process

A := ξ �T,∞� is a process with locally integrable variation. Then the compensator Ã
of A has a continuous version.

PROOF.– If ξ � 0, the claim follows from corollary 2.13. The general case follows

from the decomposition ξ = ξ+ − ξ−. �
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LEMMA 2.9.– Let T be a strictly positive predictable stopping time and ξ be an FT -

measurable random variable vanishing on {T = ∞}, E(|ξ||FT−) < ∞, E(ξ|FT−) =
0. Put A := ξ �T,∞�. Then A ∈ Aloc, and the compensator of A is zero.

PROOF.– We need to prove that A ∈ Mloc. Let us first assume that ξ is integrable

and show that A ∈ M . In other words, we want to show that, if M is a uniformly

integrable martingale such that M∞ = ξ, then M and A are indistinguishable.

In the proof of theorem 2.16, it was shown that if ξ is, additionally, bounded, then

M0 = 0 a.s. and the process M �0,T � is indistinguishable with the zero process. It

is easy to see that boundedness of ξ is not fully used, and the arguments remain true

for integrable ξ. Next, ξ is FT -measurable, hence, the random variable ξ {T�t} is

Ft-measurable for every t ∈ R+. Therefore,

Mt {T�t} = E(ξ|Ft) {T�t} = E(ξ {T�t}|Ft) = ξ {T�t} = At.

Since M �T,∞� and A are right-continuous, they are indistinguishable. Thus, M
and A are indistinguishable.

Now assume that a random variable ξ satisfies the assumptions of the lemma but

is not integrable. By proposition A.2, there is an increasing sequence of sets Bn from

FT− such that ∪nBn = Ω a.s. and E|ξ| Bn < ∞. Put Tn := TΩ\Bn
, i.e. Tn is the

restriction of T on the complement of Bn. It is clear that (Tn) is a localizing

sequence; moreover, all Tn are predictable. As in the proof of lemma 2.5, we

construct a localizing sequence (Sn) such that Sn < Tn for every n. Also put

An := ξ Bn �T,∞�. We have proved above that An ∈ M . But

ASn = (An)
Sn ∈ M , hence, A ∈ Mloc. �

The following technical lemma will often be used below.

LEMMA 2.10.– Let L be an adapted càdlàg process. Assume that there is a finite limit

limt→∞ Lt =: L∞ a.s., E|LT | < ∞ and ELT = 0 for every stopping time T . Then

L ∈ M .

PROOF.– Let t ∈ R+, B ∈ Ft. For T = tB and T = ∞, the equality ELT = 0 is

written as E(Lt B + L∞ Ω\B) = 0 and EL∞ = 0, respectively. Hence, ELt B =
EL∞ B , i.e., Lt = E(L∞|Ft) a.s. for every t ∈ R+. �

LEMMA 2.11.– Let M ∈ Mloc ∩ A and N be a bounded martingale. Then

EM∞N∞ = E
∑
s∈R

ΔMsΔNs [2.36]
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and the process L = (Lt), where

Lt := MtNt −
∑

0<s�t

ΔMsΔNs,

is a uniformly integrable martingale.

PROOF.– By lemma 2.3,

EM∞N∞ = E(N ·M∞).

Moreover,

E(N− ·M∞) = 0,

because N− is predictable and the restriction of the Doléans measure μM onto the

predictable σ-algebra is zero. Hence,

EM∞N∞ = E((ΔN) ·M∞) = E
∑
s∈R

ΔMsΔNs.

Now we can apply [2.36] to NT instead of N , where T is an arbitrary stopping

time:

EMTNT = EM∞NT = E
∑
s�T

ΔMsΔNs,

i.e. ELT = 0. So the second statement of the lemma follows from lemma 2.10. �

2.6. Doob–Meyer decomposition

We will assume that a stochastic basis B = (Ω,F ,F = (Ft)t∈R+ ,P) satisfying

the usual conditions is given.

In the discrete-time case, it is easy to prove that every submartingale can be

decomposed into the sum of a martingale and a predictable increasing process. This

decomposition is unique and called the Doob decomposition.

In the continuous-time case, such a decomposition may not exist. Indeed, we

considered examples 2.1 and 2.2 of local martingales, which are supermartingales

and not martingales. Changing the sign, take a submartingale X which is a local

martingale and not a martingale. If there were a decomposition X = M + A into a

martingale M and a predictable increasing process A, then A would be a predictable
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local martingale with bounded variation. Hence, A = 0 by corollary 2.14, and we

arrive at a contradiction. Moreover, a contradiction arises even if we do not require A
to be predictable: A ∈ Mloc ∩ V + implies A = 0; see corollary 2.9.

Necessary and sufficient conditions for the existence and uniqueness of a

decomposition of a submartingale into the sum of a martingale and a natural (!)

increasing process were obtained by P.-A. Meyer, so it is called the Doob–Meyer

decomposition.

We begin with some preliminary considerations. If a process X can be

represented as X = M + A, where M ∈ Mloc, A ∈ V and A is predictable, then

such a decomposition is unique (up to indistinguishability) by corollary 2.14. The

same argument guarantees the uniqueness of the decomposition in all theorems

below.

Let a submartingale X admit the decomposition X = M + A into the sum of a

martingale M and an increasing process A (the predictability of A is not assumed).

Then EAt = EXt − EMt < ∞ for every t ∈ R+. Since the stopped process At is

majorized by a random variable At, we have A ∈ (DL). Since M ∈ (DL), see

corollary 2.4, we have X ∈ (DL); see theorem A.5 (2). Thus, a necessary condition

for the existence of the decomposition under consideration is that the submartingale

X belongs to the class (DL). We will see that this condition is also sufficient for the

existence of the decomposition even with a predictable A.

It is also easy to prove the necessity of another more technical condition for the

existence of the decomposition under consideration. That condition also turns out to

be sufficient, and the main difficulty in the proposed proof of the Doob–Meyer

decomposition is to prove that this technical condition follows from the condition

that X belongs to the class (DL). We first introduce some additional notation.

Denote by R, the collection of all sets of the form B×{0}, B ∈ F0, or B×]s, t],
s, t ∈ R+, s < t, B ∈ Fs. It is clear that R is a semi-ring. Recall that P = σ{R}
by theorem 1.10. It is well known that finite unions of pairwise disjoint sets from R
form a ring that we denote by J .

Let X be a stochastic process. For C ∈ R, define a random variable X(C) as

B(Xt−Xs), if C = B×]s, t], s, t ∈ R+, s < t, B ∈ Fs; if C = B×{0}, B ∈ F0,

we put X(C) := 0. If a set J ∈ J is represented as the union of pairwise disjoint sets

C1, . . . , Cn from R, put X(J) :=
∑n

k=1 X(Ck). This definition is correct; moreover,

if a set J ∈ J is represented as the union of pairwise disjoint sets J1, . . . , Jn from

J , then X(J) =
∑n

k=1 X(Jk).

Now let us assume that X is an adapted càdlàg process and E|Xt| < ∞ for every

t ∈ R+. Define a function μ = μX on J by μ(J) := EX(J). According to the



Martingales and Processes with Finite Variation 95

previous paragraph, μ is an additive set function on the ring J . It follows from the

definition of a submartingale that X is a submartingale if and only if μ is nonnegative

on R and, hence, on J (recall that we consider only right-continuous

submartingales).

Now let a submartingale X admit a decomposition X = M + A into the sum

of a martingale M and an increasing process A. Then EAt < ∞ for every t ∈ R+.

Obviously, μ = μX and μA coincide on R and, hence, on J . But μA can be extended

to a σ-finite (countably additive) measure on P = σ{J }, namely, to the restriction

of the Doléans measure of A onto P . (In fact, the Doléans measure was defined for

processes A ∈ A . However, if A ∈ A +
loc, we can give exactly the same definition.

Then the Doléans measure takes values in [0,+∞] and its restriction onto P is a σ-

finite measure.) Thus, for the existence of the above decomposition, it is necessary

that the measure μ can be extended from the ring J to a countably additive measure

on P . The sufficiency of this condition is also easy to check: take as A the predictable

increasing process such that the restriction of its Doléans measure onto P coincides

with the extension of μ on P , see theorem 2.17. We realize this idea below. For

technical reasons, we deal with the case where μ is bounded on J .

LEMMA 2.12.– Let X be a submartingale and J ∈ J . Let T := DJ be the début of

the set J, and take u ∈ R+ such that D ⊆ Ω× [0, u]. Then μ(J) � E(Xu−XT∧u). If

random variables Xt converge in L1 to a random variable X∞, then μ(J) � E(X∞−
XT ).

PROOF.– Since T takes a finite number of values, �T ∧ u, u� ∈ J and X(�T ∧
u, u�) = Xu − XT∧u. However, μ(�0�) = 0 and J \ �0� ⊆ �T ∧ u, u�. The first

assertion follows now because μ is nonnegative. The second assertion follows from

(X∞ −XT )− (Xu −XT∧u) = (X∞ −Xu) {T�u}. �

The most difficult part of the proposed proof of the existence of the Doob–Meyer

decomposition is the following lemma.

LEMMA 2.13.– Let X be a submartingale from the class (D). The function μ : J →
R+ introduced above is bounded from above and continuous at ∅, i.e. Jn ∈ J ,
J1 ⊇ J2 ⊇ · · · ⊇ Jn ⊇ . . . , ∩nJn = ∅ imply limn μ(Jn) = 0.

PROOF.– We begin with some preliminary observations. The supermartingale −X
satisfies the assumptions of theorem 2.2. Hence, a.s. there exists a limit limt→∞ Xt =:
X∞. Due to the uniform integrability of X , convergence of Xt to X∞ holds in L1 as

well. Passing to a limit, as s → ∞, in the inequality∫
B

Xt dP �
∫
B

Xs dP, B ∈ Ft, t < s,
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we get Xt � E(X∞|Ft). Hence, −X satisfies assumptions of theorem 2.3.

In particular, EXT � EX0 for every stopping time T . It follows from lemma 2.12

that μ is bounded from above.

Next, since X ∈ (D), random variables XT∧n converge to XT in L1 as n → ∞,

where T is an arbitrary stopping time. By theorem A.5 (1), the family XT , where T
runs over the class of all stopping times, is uniformly integrable.

Let (Jn) be a decreasing sequence of sets from J with empty intersection.

Without loss of generality, we assume that Jn ∩ �0� = ∅. Fix an ε > 0. Since X is

right-continuous in L1, there are sets Kn ∈ J such that the closure Kn (the set

whose ω-section is the closure in t of the ω-section of Kn for every ω) is in Jn and

μ(Jn) � μ(Kn) + 2−nε.

Put Ln := K1 ∩ · · · ∩Kn; then, for every n,

μ(Jn) � μ(Ln) + ε.

The sets Ln are decreasing and have empty intersection. Therefore, if Tn is the

début of the set Ln (that coincides with the début of the set Ln), then the sequence

(Tn(ω)) for every ω is monotone and tends to +∞ (and even equals +∞ for large n),

which follows from the closedness and the uniform boundedness in t of ω-sections of

Ln(ω). By lemma 2.12,

μ(Ln) � E(X∞ −XTn).

Since X belongs to the class (D), the expression on the right tends to 0 as n →
∞ due to the above remark. This yields limn μ(Jn) � ε. Since ε > 0 is arbitrary,

limn μ(Jn) = 0. �

THEOREM 2.23.– Let X be a submartingale from the class (D). Then there exists

a unique (up to an evanescent set) decomposition X = M + A, where M ∈ M ,
A ∈ A +, and A is predictable.

PROOF.– It is well known from the measure theory that lemma 2.13 allows us to

extend the function μ from the ring J to a finite measure on the σ-algebra P
generated by it, in a unique way. This extension is denoted by the same letter μ.

Let B be an evanescent predictable set. Then its début DB a.s. equals +∞, hence

C := {DB < +∞} ∈ F0. Since B ⊆ �0� ∪ �0C ,+∞�, �0C ,+∞� = ∪n�0C , n�,

�0C , n� = C×]0, n] ∈ R and μ(�0C , n�) = E C(Xn−X0) = 0, we have μ(B) = 0.
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Thus, the measure μ on P satisfies the assumptions of theorem 2.17, which

implies the existence of a predictable process A ∈ A + such that μ and the restriction

of the Doléans measure μA onto P coincide. In particular, put M := X − A. Let

s < t, B ∈ Fs. Then

E B(Mt −Ms) = E B(Xt −Xs)− E B(At −As)

= μ(B×]s, t])− μA(B×]s, t]) = 0.

Hence, M is a martingale. Moreover, all At are majorized by an integrable random

variable A∞. Therefore, A ∈ (D) and, hence, M ∈ (D), see theorem A.5 (2).

Finally, the uniqueness of the decomposition was mentioned above. �

THEOREM 2.24.– Let X be a submartingale. A decomposition X = M + A, where

M ∈ M , A ∈ V +, exists if and only if X ∈ (DL). In this case, we can choose a

predictable A, and such a decomposition is unique (up to an evanescent set).

It turns out that an arbitrary submartingale admits a decomposition if M is

allowed to be a local martingale. Such a decomposition is also called the

Doob–Meyer decomposition.

THEOREM 2.25.– Let X be a submartingale. Then there exists a unique (up to

indistinguishability) decomposition X = M + A, where M ∈ Mloc, A ∈ V +, and

A is predictable.

PROOF OF THEOREM 2.25.– Define a stopping time Tn by Tn := inf {t : |Xt| >
n}∧n. Note that Tn increase to +∞. Then X∗

Tn
� n+|XTn |, and XTn is integrable by

corollary 2.1. Hence, XTn ∈ (D). However, XTn is a submartingale by corollary 2.2.

By theorem 2.23, for every n, there is a decomposition

XTn = Mn +An, [2.37]

where Mn ∈ M , An ∈ A n, An is predictable for every n. Stopping processes in

both sides of [2.37] at time Tn and comparing with [2.37], we get from the uniqueness

of the Doob–Meyer decomposition that

An and (An)Tn are indistinguishable for every n = 1, 2, . . . . [2.38]

Similarly, stopping processes in both sides of [2.37] at time Tn−1 and comparing

with [2.37] for index n − 1, we get from the uniqueness of the Doob–Meyer

decomposition that

An−1 and (An)Tn−1 are indistinguishable for every n = 2, 3, . . . . [2.39]
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Now let A be obtained by the “gluing” procedure from {An}, {Tn}. Due to

proposition 2.9, A is a predictable increasing process. Moreover,

An and ATn are indistinguishable for every n = 1, 2, . . . .

Therefore, if M := X −A, then

Mn and MTn are indistinguishable for every n = 1, 2, . . . .

Hence, M ∈ Mloc.

The uniqueness of the decomposition was mentioned at the beginning of this

section. �

PROOF OF THEOREM 2.24.– The existence of the decomposition is proved similar

to that in theorem 2.25 with the only difference that one should take Tn := n. The

necessity of the condition and the uniqueness of the decomposition were discussed

earlier. �

EXERCISE 2.40.– Let X be a submartingale and a process with independent

increments on the considered stochastic basis. Find its Doob–Meyer decomposition.

HINT.– Use exercise 2.6.

2.7. Square-integrable martingales

Unless otherwise stated, we will assume that a stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) satisfying the usual conditions is given.

DEFINITION 2.17.– A martingale from the space M 2 is called a square-integrable
martingale.

Recall that

M 2 =
{
M ∈ M : EM2

∞ < ∞}
=
{
M ∈ M : sup

t∈R+

EM2
t < ∞}

=
{
M ∈ Mloc : E(M

∗
∞)2 < ∞}

,

see section 2.1 and theorem 2.8. In particular,

E(MN)∗∞ < +∞ for every M,N ∈ M 2. [2.40]

We continue to speak about elements of the space M 2 as stochastic processes. But

the reader should keep in mind that in this section, as a rule, elements of M 2 are to
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be interpreted as equivalence classes consisting of indistinguishable square-integrable

martingales. As already noted, then M 2 is isomorphic to L2(F∞) and, therefore, is a

Hilbert space with the scalar product

(M,N)M2 := EM∞N∞.

Orthogonality in this sense will be called weak orthogonality in order to emphasize

its difference from the notion of strong orthogonality introduced below.

Recall also that

‖M‖M2 � ‖M‖H 2 � 2‖M‖M2 , M ∈ M 2, [2.41]

where

‖M‖2H 2 = E(M∗
∞)2.

If a sequence converges in L2, it converges in probability, hence, there is a

subsequence converging almost surely. Using this argument, we obtain, in particular,

the following lemma which will often be used in this section.

LEMMA 2.14.– If a sequence (Mn) in M 2 converges to M in the norm of M 2, then

there is a subsequence (nk) such that

lim
k→∞

(M −Mnk)∗∞ = 0 a.s.,

i.e. for almost all ω, trajectories Mnk· (ω) converge to M·(ω) uniformly in t.

EXERCISE 2.41.– Let M ∈ M 2. Show that, for s < t,

E(M2
t −M2

s |Fs) = E((Mt −Ms)
2|Fs).

Let M ∈ M 2. Consider the square M2 of M . By proposition 2.1, see also the

previous exercise, M2 is a submartingale. Moreover, M2 ∈ (D) by [2.40]. Hence,

we can apply theorem 2.23, which asserts that there exists the Doob–Meyer

decomposition of M2:

M2 = N +A, N ∈ M , A ∈ A +, A is predictable.

DEFINITION 2.18.– The quadratic characteristic of a square-integrable martingale

M ∈ M 2 is a predictable integrable increasing process, denoted by 〈M,M〉 or 〈M〉,
such that M2 − 〈M,M〉 is a uniformly integrable martingale. The mutual quadratic
characteristic of square-integrable martingales M,N ∈ M 2 is a predictable process

with integrable variation, denoted by 〈M,N〉, such that MN−〈M,N〉 is a uniformly

integrable martingale.
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It is clear that the quadratic characteristic 〈M,M〉 and the mutual quadratic

characteristic 〈M,N〉 do not depend on the choice of versions of M and N . It

follows from the argument given before the definition that the quadratic characteristic

〈M,M〉 exists for every M ∈ M 2, while corollary 2.14 implies its uniqueness (up to

indistinguishability). The mutual quadratic characteristic 〈M,N〉 is also unique (up

to indistinguishability) by the same corollary, which yields the following fact as well:

if A is a predictable process, A ∈ V (respectively A ∈ V +) and MN − A ∈ Mloc

(respectively M2 − A ∈ Mloc), then A = 〈M,N〉 (respectively A = 〈M,M〉). The

existence of the mutual quadratic characteristic 〈M,N〉 for every M,N ∈ M 2 is

proved using polarization: for example, we can take the process

1

2
(〈M +N,M +N〉 − 〈M,M〉 − 〈N,N〉)

as 〈M,N〉.

The quadratic characteristic 〈M,M〉 is often called the angle bracket of a

martingale M ∈ M 2.

Since the quadratic characteristic is determined up to indistinguishability, relations

between them will always be understood up to an evanescent set, and it will not always

be mentioned explicitly.

Let us note that, obviously, the form 〈M,N〉 is symmetric and bilinear in the sense

just indicated.

EXERCISE 2.42.– Let a martingale M ∈ M 2 be a process with independent

increments on the considered basis. Find 〈M,M〉.
LEMMA 2.15.– Let M,N ∈ M 2 and T be a stopping time. Then

〈M,NT 〉 = 〈M,N〉T .

PROOF.– Put L := MNT − (MN)T . We will check that L ∈ M using lemma 2.10.

It is enough to verify only the last assumption on L. Let S be a stopping time. Then

ELS = E(MSNS∧T −MS∧TNS∧T )

= E(E
(
MS |FS∧T )NS∧T −MS∧TNS∧T

)
= 0,

because E(MS |FS∧T ) = MS∧T by theorem 2.4.

Thus, L ∈ M . On the other hand, (MN)T − 〈M,N〉T is a uniformly integrable

martingale by the definition of the characteristic. Therefore, MNT − 〈M,N〉T ∈ M
�

THEOREM 2.26.– Let M,N ∈ M 2, M and N be a.s. continuous. Then 〈M,N〉 has

a continuous version.



Martingales and Processes with Finite Variation 101

PROOF.– This proof follows from theorems 1.18 and 2.4, see the proof of

theorem 2.18. �

DEFINITION 2.19.– Square-integrable martingales M,N ∈ M 2 are called strongly
orthogonal, if M0N0 = 0 a.s. and MN is a local martingale.

LEMMA 2.16.–

1) If M,N ∈ M 2 are strongly orthogonal, then MN ∈ M .

2) If M,N ∈ M 2 are strongly orthogonal, then they are weakly orthogonal.

3) M,N ∈ M 2 are strongly orthogonal if and only if M0N0 = 0 a.s. and

〈M,N〉 = 0.

PROOF.– (1) This proof follows from [2.40] and theorem 2.8. To prove (2) it is enough

to note that EM∞N∞ = EM0N0 = 0 by part (1). Finally, (3) follows directly from

the definitions. �

DEFINITION 2.20.– A linear subspace H ⊆ M 2 is called a stable subspace if

1) H is closed in the norm ‖ · ‖M2 ;

2) H is stable under stopping, i.e. M ∈ H implies MT ∈ H for every stopping

time T ;

3) M ∈ H , B ∈ F0 implies M B ∈ H .

Recall that, if L is a closed linear subspace in a Hilbert space H , the set L⊥ of

vectors that are orthogonal to all vectors in L, is called the orthogonal complement of

L. It is known that L⊥ is a closed linear subspace itself, and any vector in H has a

unique decomposition into the sum of a vector from L and a vector from L⊥.

THEOREM 2.27.– Let H ⊆ M 2 be a stable subspace, and let

H ⊥ := {N ∈ M 2 : EM∞N∞ = 0 for every M ∈ H } be its orthogonal

complement. Then H ⊥ is a stable subspace, and M and N are strongly orthogonal

for every M ∈ H , N ∈ H ⊥.

COROLLARY 2.15.– Let H ⊆ M 2 be a stable subspace. Then every M ∈ M 2

has a unique decomposition M = M ′ + M ′′, where M ′ ∈ H and M ′′ is strongly

orthogonal to all martingales in H .

PROOF OF THEOREM 2.27.– As mentioned before the statement, H ⊥ is closed in

the norm according to the theory of Hilbert spaces.

Let us take an arbitrary N ∈ H ⊥. Then

EM∞N∞ = 0 for every M ∈ H . [2.42]
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Let M ∈ H . For any stopping time T , we have MT ∈ H and we can apply

[2.42] with MT instead of M :

EMTNT = E
(
MTE(N∞|FT )

)
= EMTN∞ = 0. [2.43]

Therefore, MN ∈ M by lemma 2.10. Moreover, it follows from [2.43] that

EM∞NT = E
(
E(M∞NT |FT )

)
= EMTNT = 0.

Hence, NT ∈ H ⊥ because M ∈ H is arbitrary.

Let M ∈ H and B ∈ F0. Since M B ∈ H , we can apply [2.42] with M B

instead of M :

E BM∞N∞ = 0. [2.44]

Hence, N B ∈ H ⊥ because M ∈ H is arbitrary. However, we have already

proved that E(M∞N∞|F0) = M0N0. Therefore, it follows from [2.44] that

E BM0N0 = E BE(M∞N∞|F0) = 0,

and M0N0 = 0 a.s. because B ∈ F0 is arbitrary. �

Here are some examples of stable subspaces.

EXAMPLE 2.5.– Let us define the subspace M 2,c of continuous square-integrable

martingales as the set of all elements (equivalence classes) in M 2 which contain a

continuous square-integrable martingale, i.e. consist of a.s. continuous

square-integrable martingales. Less formally,

M 2,c := {M ∈ M 2 : trajectories M·(ω) are a.s. continuous.}

M 2,c is a stable subspace. Indeed, that this space is linear and properties (2), (3) in

the definition of a stable subspace are obvious. Property (1) follows from lemma 2.14.

The orthogonal complement of M 2,c is denoted by M 2,d and is called the subspace

of purely discontinuous square-integrable martingales.

Let us note that the process identically equal to 1 is in M 2,c. Hence, since elements

of M 2,c and M 2,d are strongly orthogonal, we have N0 = 0 a.s. for every N ∈ M 2,d.

By corollary 2.15, every martingale M ∈ M 2 has a unique (up to

indistinguishability) decomposition

M = M0 +M c +Md, M c ∈ M 2,c, Md ∈ M 2,d. [2.45]
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The components M c and Md of this decomposition are called the continuous
martingale component and the purely discontinuous martingale component of M . It

follows from the definition that M c
0 = Md

0 = 0. The uniqueness of this

decomposition implies that, for every stopping time T , up to indistinguishability,

(MT )
c
= (M c)

T
, (MT )

d
= (Md)

T
.

The reader should be warned that, for a square-integrable martingale with finite

variation, decomposition [2.45] into continuous and purely discontinuous martingale
components, as a rule, differs from the decomposition into continuous and purely

discontinuous processes with finite variation in exercise 2.22. See, in particular,

theorem 2.28 below.

EXAMPLE 2.6.– Let T be a strictly positive stopping time. Put

M 2[T ] := {M ∈ M 2,d : {ΔM 
= 0} \ �T � is an evanescent set}.

M 2[T ] is a stable subspace: again, the linearity and properties (2), (3) from the

definition of stable subspaces are obvious and property (1) follows from lemma 2.14.

Note that the intersection of any family of stable subspaces is a stable subspace.

Consequently, there exists the smallest stable subspace containing a given martingale

M ∈ M 2, and it will be described in Chapter 3. A somewhat more difficult problem

is a description of the smallest stable subspace containing a finite set of martingales

M1, . . . , Mk ∈ M 2. Let us only mention here that it does not coincide, in general,

with the sum of smallest stable subspace containing M j , j = 1, . . . , k, which may not

be closed in the norm.

THEOREM 2.28.– A ∩ M 2 ⊆ M 2,d.

PROOF.– Let M ∈ A ∩ M 2. By lemma 2.11, M is orthogonal to any bounded

continuous martingale. Since every continuous N ∈ M 2,c is a limit (in M 2) of

bounded martingales NTn , where Tn := inf {t : |Nt| > n}, the claim follows. �

The following example shows that the inclusion in theorem 2.28 is strict in general.

EXAMPLE 2.7.– Let ξ1, . . . , ξn, . . . be independent random variables on a complete

probability space (Ω,F ,P) and P(ξn = ±1/n) = 1/2. Put

Ft := σ{ξ1, . . . , ξ[t],N }, where [·] is the integer part of a number and N is a

family of null sets in F ,

Mt :=
∑
n�t

ξn.
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It is clear that M = (Mt) is a martingale and

EM2
t = E

(∑
n�t

ξn

)2

=
∑
n�t

Eξ2n =
∑
n�t

1

n2
�

∞∑
n=1

1

n2
< ∞,

hence, M ∈ M 2. Let Mn be a process M stopped at time n. Then, by theorem 2.28,

Mn ∈ M 2,d, hence, M , being the limit of Mn in M 2, is also an element on the

subspace M 2,d. However,

Var (M)∞ =

∞∑
n=1

|ξn| =
∞∑

n=1

1

n
= ∞.

We need the following two lemmas in order to study purely discontinuous square-

integrable martingales.

LEMMA 2.17.– Let T be a totally inaccessible strictly positive stopping time. Then

M 2[T ] ⊆ Mloc ∩ V and the subspace M 2[T ] consists precisely of processes of the

form M = A − Ã, where A = ξ �T,∞�, ξ is a square-integrable FT -measurable

random variable vanishing on {T = ∞}, Ã is the compensator of A, and Ã is

continuous. If M ∈ M 2[T ] and N ∈ M 2, then

MN −ΔMTΔNT �T,∞� ∈ M .

In particular, EM2
∞ = E(ΔMT )

2 {T<∞}. If N ∈ M 2, then the projection M of

a martingale N onto M 2[T ] has the indicated form with ξ = ΔNT {T<∞}.

PROOF.– Let M have the form indicated in the lemma, then M ∈ Mloc. In order to

prove that M ∈ M 2, it is enough to check that E(M∗
∞)2 < ∞. To do this, in its turn,

it is enough to consider nonnegative ξ and to show that EÃ2
∞ < ∞.

Let η be any F∞-measurable bounded nonnegative random variable and L a

bounded martingale with L∞ = η. By lemma 2.3, proposition 2.7, the Schwarz

inequality and Doob’s inequality (corollary 2.6),

EL∞Ã∞ = E(L− · Ã∞) = E(L− ·A∞) � EL∗
∞A∞

�
(
E
(
L∗
∞
)2
EA2

∞
)1/2

� 2
(
EL2

∞EA2
∞
)1/2

.

Since(
EÃ2

∞
)1/2

= sup
η∈L2(F∞), η�0

Eη2=1

EηÃ∞ = sup
η∈L2(F∞), η�0

η bounded, Eη2=1

EηÃ∞,
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we get

EÃ2
∞ � 4EA2

∞ = 4Eξ2 < ∞.

Thus, M ∈ M 2. By lemma 2.8, the compensator Ã is a.s. continuous. Hence, the

set {ΔM 
= 0} \ �T � is evanescent. By lemma 2.11,

EM∞N∞ = EξΔNT {T<∞} [2.46]

for every bounded martingale N . Next, bounded martingales are dense in M 2 and

both sides of [2.46] are continuous linear functionals in N on M 2 (the right side

is continuous in N because the mapping N � ΔNT {T<∞} from M 2 to L2 is

continuous due to the inequalities (ΔN)∗ � 2N∗ and [2.41]). Hence, [2.46] is valid

for every N ∈ M 2. In particular, M is weakly orthogonal to continuous N , i.e.

M ∈ M 2,d, hence M ∈ M 2[T ].

Take any N ∈ M 2[T ] and put ξ := ΔNT {T<∞}. Define M as in the statement

of the lemma. Then, on the one hand, N − M is a.s. continuous, i.e. N − M ∈
M 2,c; on the other hand, N − M ∈ M 2[T ] ⊆ M 2,d. Therefore, N = M , i.e. the

subspace M 2[T ] consists only of martingales M of the considered form. In particular,

M 2[T ] ⊆ V .

Take any N ∈ M 2 and put ξ := ΔNT {T<∞}. Again, define M as in the

previous paragraph. Then Δ(N −M)T {T<∞} = 0 a.s. Now it follows from [2.46]

that N − M is weakly orthogonal to any element in M 2[T ]. Hence, M is the

projection of N onto M 2[T ].

Let M ∈ M 2[T ] and N ∈ M 2. Put L := MN −ΔMTΔNT �T,∞� and let S be

an arbitrary stopping time. Applying [2.46] with NS instead of N , we get

EMSNS = EM∞NS = EΔMTΔNT {S�T, T<∞},

i.e. ELS = 0. By lemma 2.10, L ∈ M . �

LEMMA 2.18.– Let T be a predictable strictly positive stopping time. Then M 2[T ] ⊆
Mloc ∩ V and the subspace M 2[T ] consists precisely of processes of the form M =
ξ �T,∞�, where ξ is a square-integrable FT -measurable random variable, vanishing

on {T = ∞} and such that E(ξ|FT−) = 0. If M ∈ M 2[T ] and N ∈ M 2, then

MN −ΔMTΔNT �T,∞� ∈ M .

In particular, EM2
∞ = E(ΔMT )

2 {T<∞}. If N ∈ M 2, then the projection M of

a martingale N onto M 2[T ] has the indicated form with ξ = ΔNT {T<∞}.
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PROOF.– If M has the form indicated in the lemma, then M ∈ Mloc by lemma 2.9;

therefore, M ∈ M 2. From now on, repeat the proof of lemma 2.17. �

COROLLARY 2.16.– Let T be a predictable or totally inaccessible strictly positive

stopping time. Then a square-integrable martingale N belongs to the orthogonal

complement of M 2[T ] if and only if ΔNT {T<∞} = 0 a.s.

In the next theorem, we describe a structure of the purely discontinuous martingale

component of any square-integrable martingale.

THEOREM 2.29.– Let M ∈ M 2 and let (Tn) be a sequence of stopping times such

that every Tn is strictly positive and is either predictable or totally inaccessible,

{ΔM 
= 0} ⊆
⋃
n

�Tn� [2.47]

and

�Tn� ∩ �Tm� = ∅, m 
= n. [2.48]

Put An = ΔMTn �Tn,∞�, M
n := An − Ãn, Nn := M1 + · · ·+Mn, where Ãn

is the compensator of An. Then the sequence Nn converges in M 2 to Md as n → ∞.

Moreover,

E(Md
∞)

2
= E

∑
s∈R+

(ΔMs)
2. [2.49]

REMARK 2.11.– A sequence (Tn) of stopping times satisfying the assumptions of the

theorem always exists; see theorem 1.17.

PROOF.– We have Mn ∈ M 2[Tn] by lemmas 2.17 and 2.18, ΔMn = ΔAn =
ΔM �Tn�, and the graphs �Tn� are disjoint. Hence, the martingales M1, . . . , Mn, . . .

are strongly orthogonal by corollary 2.16. By the same reason, M − Nn is strongly

orthogonal to M1, . . . , Mn and, hence, to their sum Nn. Therefore,

EM2
∞ = E(Nn

∞)2 + E(M∞ −Nn
∞)2 =

n∑
k=1

E(Mk
∞)2 + E(M∞ −Nn

∞)2

=
n∑

k=1

E(ΔMTk
)2 {Tk<∞} + E(M∞ −Nn

∞)2, [2.50]

where we use lemmas 2.17 and 2.18 in the last equality. In particular,∑∞
k=1 E(M

k
∞)2 < ∞. By the Cauchy criterion, the orthogonal series

∑∞
k=1 M

k
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converges in M 2. Denote its sum by N . Since N is the limit of purely discontinuous

square-integrable martingales Nn, we have N ∈ M 2,d. On the other hand,

ΔNn = ΔM ∪n
k=1

�Tk�. Therefore, it follows from [2.47] and lemma 2.14 that ΔM

and ΔN are indistinguishable, i.e. M − N ∈ M 2,c. Thus, N = Md and

M −N = M0 +M c.

Finally, passing to the limit as n → ∞ in [2.50] and using [2.47] and [2.48], we

get

E(Md
∞)

2
+ E(M0 +M c

∞)
2
= EM2

∞

=

∞∑
k=1

E(ΔMTk
)2 {Tk<∞} + E(M∞ −N∞)

2

= E
∑
s∈R+

(ΔMs)
2 + E(M0 +M c

∞)
2
,

hence [2.49] follows. �

COROLLARY 2.17.– A purely discontinuous square-integrable martingale M is

orthogonal to a square-integrable martingale N if ΔMΔN = 0 (up to an evanescent

set).

PROOF.– Take the sequence (Mn) as in theorem 2.29, then Mn is orthogonal to N
for every n by corollary 2.16, while M is the limit of the sums M1 + · · · + Mn by

theorem 2.29. �

According to [2.49],

E
∑
s∈R+

(ΔMs)
2 < +∞

for every M ∈ M 2. However, formally, the process
∑

s�·(ΔMs)
2, in general, may

not be in A + and may not be increasing, because it may take value +∞ and not be

right-continuous at one point (on a null set). We will often encounter such processes

in the rest of the book. So let us introduce a formal definition.

DEFINITION 2.21.– Let X be an optional process such that

{X 
= 0} ⊆
⋃
n

�Tn�

for a sequence (Tn) of stopping times. Assume that X0 = 0 a.s. and, for every t ∈ R+,∑
s�t

|Xs| < +∞ a.s.



108 Stochastic Calculus for Quantitative Finance

Under these assumptions, let us define a process S(X) as a purely discontinuous

process with finite variation such that, for every t ∈ R+,

S(X)t =
∑
s�t

Xs a.s.

LEMMA 2.19.– The process S(X) in definition 2.21 is well defined and unique up

to indistinguishability. If X is predictable, then S(X) is predictable. If X � 0, then

S(X) has a version in V +.

PROOF.– Without loss of generality, we may assume that the graphs �Tn� are disjoint.

Then, for every t ∈ R+,

∑
s�t

|Xs| =
∞∑

n=1

|XTn | {Tn�t},
∑
s�t

Xs =

∞∑
n=1

XTn {Tn�t},

which implies that{∑
s�t

|Xs| < +∞
}

∈ Ft

and the random variable∑
s�t

Xs

is Ft-measurable. So put

S(X)t =
∑
s�t

Xs

on the set B :=
⋂

n

{∑
s�n |Xs| < +∞

}
∩ {X0 = 0} of measure one and

S(X)t = 0 on its complement. Under such a definition, S(X) ∈ V d and

ΔS(X) = X B . If X is predictable, then this version of S(X) is predictable by

proposition 1.8, while an arbitrary version of S(X) is predictable by corollary 1.2. �

DEFINITION 2.22.– The quadratic variation of a square-integrable martingale M ∈
M 2 is the increasing process

[M,M ] := 〈M c,M c〉+ S
(
(ΔM)2

)
.
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The quadratic covariation of square-integrable martingales M,N ∈ M 2 is the

process with finite variation

[M,N ] := 〈M c, N c〉+ S(ΔMΔN).

The quadratic variation [M,M ] is often called the quadratic bracket of a

martingale M ∈ M 2.

Since the quadratic covariation is determined up to indistinguishability, all

relations including quadratic brackets are always understood up to

indistinguishability. In particular, the form [M,N ] is symmetric and bilinear in this

sense.

Note that the process 〈M c, N c〉 is a.s. continuous by theorem 2.26. Therefore, the

processes Δ[M,N ] and ΔMΔN are indistinguishable for every M,N ∈ M 2.

It follows from the definition and [2.49] that, for M,N ∈ M 2,

[M,M ] ∈ A +, [M,N ] ∈ A ,

and lemma 2.15 implies

[M,NT ] = [M,N ]T [2.51]

for every stopping time T . Furthermore, (M c)
2 − 〈M c,M c〉 ∈ M by the definition

of the quadratic characteristic. Taking into account [2.49], we have

EM2
∞ = EM2

0 + E(M c
∞)

2
+ E(Md

∞)
2
= EM2

0 + E[M,M ]∞.

Applying this to MT and using [2.51], we get EM2
T = EM2

0 + E[M,M ]T . By

lemma 2.10, we have M2 − [M,M ] ∈ M . Using polarization, we arrive at the

following statement.

LEMMA 2.20.– For M,N ∈ M 2, the processes MN − [M,N ] and

[M,N ] − 〈M,N〉 are uniformly integrable martingales. In particular, 〈M,N〉 is the

compensator of [M,N ].

Let us formulate without proof a statement which explains the origin of the term

“quadratic variation”. For every M ∈ M 2 and t ∈ R+ for every sequences of

partitions γn = {0 = tn0 < tn1 < · · · < tnk(n) = t} such that

|γn| := maxk=1,...,k(n) |tnk − tnk−1| → 0, it holds

[M,M ]t = P- lim
n

k(n)∑
k=1

(
Mtn

k
−Mtn

k−1

)2
, [2.52]

where P- lim stands for the limit in probability.
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THEOREM 2.30 (Kunita–Watanabe inequalities).– Let M,N ∈ M 2, and let H and

K be measurable processes. Then a.s.

∞∫
0

|HsKs| dVar 〈M,N〉s �
( ∞∫

0

H2
s d〈M,M〉s

)1/2( ∞∫
0

K2
s d〈N,N〉s

)1/2

[2.53]

and

∞∫
0

|HsKs| dVar [M,N ]s �
( ∞∫

0

H2
s d[M,M ]s

)1/2( ∞∫
0

K2
s d[N,N ]s

)1/2

. [2.54]

In particular,

E

∞∫
0

|HsKs| dVar 〈M,N〉s �
(
E

∞∫
0

H2
s d〈M,M〉s

)1/2

×
(
E

∞∫
0

K2
s d〈N,N〉s

)1/2

[2.55]

and

E

∞∫
0

|HsKs| dVar [M,N ]s �
(
E

∞∫
0

H2
s d[M,M ]s

)1/2

×
(
E

∞∫
0

K2
s d[N,N ]s

)1/2

. [2.56]

PROOF.– Let us prove inequality [2.54]. Put

A := [M,M ] + [N,N ] + Var ([M,N ]).

By theorem 2.20, there exist optional processes F , G and J such that F,G � 0
everywhere and

[M,M ] = F ·A, [N,N ] = G ·A, [M,N ] = J ·A
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up to indistinguishability. Next, let λ ∈ Q. Then the processes

[M + λN,M + λN ] and [M,M ] + 2λ[M,N ] + λ2[N,N ]

are indistinguishable. Therefore, we can again apply theorem 2.20 according to which

there exists an optional nonnegative process Q(λ) such that

[M + λN,M + λN ] = Q(λ) ·A

up to indistinguishability. Thus, the processes(
F + 2λJ + λ2G

) ·A and Q(λ) ·A

are indistinguishable. Hence, P-a.s.,

Q(λ)s = Fs + 2λJs + λ2Gs for dAs-almost all s.

Consequently, with P-probability one,

Fs + 2λJs + λ2Gs � 0 for dAs-almost all s.

holds simultaneously for all λ ∈ Q and, hence, simultaneously for all λ ∈ R. Thus,

P-a.s.

|Js| � F 1/2
s G1/2

s for dAs-almost all t.

The claim follows from the Schwarz inequality:

∞∫
0

|HsKs| dVar [M,N ]s =

∞∫
0

|HsKs||Js| dAs

�
∞∫
0

|Hs|F 1/2
s |Ks|G1/2

s dAs

�
( ∞∫

0

H2
sFs dAs

)1/2( ∞∫
0

K2
sGs dAs

)1/2

=

( ∞∫
0

H2
s d[M,M ]s

)1/2( ∞∫
0

K2
s d[N,N ]s

)1/2

.
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Inequality [2.53] is proved similarly. Inequalities [2.55] and [2.56] are obtained

from [2.53] and [2.54], respectively, if we apply the Schwarz inequality. �

We end this section with the remark that, using localization, the notions of (mutual)

quadratic characteristic and quadratic (co)variation can be easily extended to locally
square integrable martingales. The case of the quadratic variation will be considered

in greater generality in the next section. Here we provide a necessary information

concerning quadratic characteristics.

DEFINITION 2.23.– A local martingale M is called a locally square-integrable
martingale if there is a localizing sequence {Tn} of stopping times such that, for

every n, we have MTn ∈ M 2, i.e. the stopped process MTn is a square-integrable

martingale. The class of all locally square-integrable martingales is denoted by M 2
loc.

The quadratic characteristic of a locally square-integrable martingale M ∈ M 2
loc is a

predictable increasing process, denoted by 〈M,M〉 or 〈M〉, such that M2 − 〈M,M〉
is a local martingale. The mutual quadratic characteristic of locally

square-integrable martingales M,N ∈ M 2
loc is a predictable process with finite

variation, denoted by 〈M,N〉, such that MN − 〈M,N〉 is a local martingale.

The uniqueness (up to indistinguishability) of the quadratic characteristic and the

mutual quadratic characteristic follow, as above, from corollary 2.14. Their existence

is proved using the “gluing” procedure (proposition 2.9) similarly to the proof of the

existence of the compensator in theorem 2.21.

For locally square-integrable martingales, basic properties of quadratic

characteristics such as symmetry and bilinearity, lemma 2.15, theorem 2.26, the

Kunita–Watanabe inequalities [2.53] and [2.55], still hold true.

EXERCISE 2.43.– Let W = (Wt)t∈R+ be a Wiener process on a stochastic basis

(Ω,F ,F,P). Show that W ∈ M 2
loc, and find its quadratic characteristic 〈W,W 〉.

2.8. Purely discontinuous local martingales

Unless otherwise stated, we will assume that a stochastic basis B = (Ω,F ,F =
(Ft)t∈R+ ,P) satisfying the usual conditions is given.

It was shown in the previous section that square-integrable martingales admit a

decomposition into the sum of continuous and purely discontinuous martingale

components and the structure of purely discontinuous martingales was investigated.

In this section, we fulfill a similar program for local martingales. Since stochastic

processes are implicitly understood up to indistinguishability, it is natural to consider

local martingales with a.s. continuous trajectories as continuous local martingales.

With regard to purely discontinuous local martingales, our definition is motivated by

the square-integrable case; see also lemma 2.21 below.
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DEFINITION 2.24.– The space of continuous local martingales and the subspace of

continuous local martingales starting from 0, are defined as

M c
loc := {M ∈ Mloc : M a.s. continuous}

and M c
loc,0 := {N ∈ M c

loc : N0 = 0 a.s.},

respectively. The space of purely discontinuous local martingales is defined as

M d
loc := {M ∈ Mloc : M0 = 0 a.s. and MN ∈ Mloc for every N ∈ M c

loc,0}.
Obviously, M c

loc, M c
loc,0 and M d

loc are linear spaces.

LEMMA 2.21.– Let M ∈ M d
loc. Then MN ∈ Mloc for every N ∈ M c

loc.

PROOF.– It is enough to check that, if M ∈ Mloc, M0 = 0 a.s., and ξ is an F0-

measurable random variable, then Mξ ∈ Mloc. Let {Tn} be a localizing sequence for

M , Sn := 0{|ξ|>n} is the restriction of the stopping time taking value zero identically

on the set {|ξ| > n}. It is clear that {Sn} and {Sn ∧ Tn} are localizing sequences,

(Mξ)Sn∧Tn = ξMTn {|ξ|�n}, and it is easy to see that ξ {|ξ|�n}MTn ∈ M for

every n. �

REMARK 2.12.– If M ∈ M c
loc,0 and Tn := inf {t : |Mt| > n}, then MTn is a.s.

bounded. In particular, MTn ∈ M 2 and M ∈ M 2
loc.

LEMMA 2.22.– The classes M c
loc and M d

loc are stable under stopping. If M ∈ Mloc

and MTn ∈ M c
loc (respectively MTn ∈ M d

loc) for some localizing sequence (Tn) of

stopping times, then M ∈ M c
loc (respectively M ∈ M d

loc).

PROOF.– The assertions concerning M c
loc are obvious. If M ∈ Mloc and

MTn ∈ M d
loc for some localizing sequence (Tn) of stopping times, then, for every

N ∈ M c
loc,0, we have MTnN ∈ Mloc. Hence, MTnNTn ∈ Mloc and MN ∈ Mloc

by theorem 2.7.

Let M ∈ M d
loc, T be a stopping time, N ∈ M c

loc,0. First let us prove that then

MTN ∈ Mloc under the following additional assumptions: MT ∈ H 1, N a.s.

bounded. Since MTN = MTNT +MT (N −NT ) and MTNT = (MN)T ∈ Mloc,

it is enough to prove that the process L := MT (N −NT ) satisfies the assumptions of

lemma 2.10, from which only the last one needs to be checked. Let S be an arbitrary

stopping time. Then, due to the additional assumptions,

ELS = E(MS∧TNS −MS∧TNS∧T )

= E(MS∧TE
(
NS |FS∧T )−MS∧TNS∧T

)
= 0,

because E(NS |FS∧T ) = NS∧T by theorem 2.4.
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Now consider the general case. By theorem 2.7 and remark 2.12, there is a

localizing sequence (Tn) of stopping times such that MTn ∈ H 1 and NTn is a.s.

bounded for every n. According to the previous case,

(MTN)Tn = MT∧TnNTn ∈ Mloc, hence MTN ∈ Mloc. Therefore, MT ∈ M d
loc.

�

LEMMA 2.23.– M c
loc ∩ M 2 = M 2,c, M d

loc ∩ M 2 = M 2,d.

PROOF.– The first assertion is obvious. If M ∈ M d
loc ∩ M 2, then, for every N ∈

M 2,c ⊆ M c
loc, we have MN ∈ Mloc. But EM∗

∞N∗
∞ < ∞ due to [2.40], hence,

MN ∈ M and EM∞N∞ = 0, i.e. M ∈ M 2,d.

Conversely, let M ∈ M 2,d and N ∈ M c
loc,0. By remark 2.12, MNTn ∈ M ,

where Tn := inf {t : |Nt| > n}. Therefore, MTnNTn ∈ M for every n, hence

MN ∈ Mloc and M ∈ M d
loc. �

LEMMA 2.24.– Mloc ∩ V ⊆ M d
loc.

PROOF.– Let M ∈ Mloc ∩ V = Mloc ∩ Aloc and N ∈ M c
loc,0. Take a localizing

sequence (Tn) of stopping times such that MTn ∈ Mloc∩A and NTn is a.s. bounded

for every n. Then MTnNTn ∈ M by lemma 2.11. Hence, MN ∈ Mloc and M ∈
M d

loc. �

EXERCISE 2.44.– Construct an example of a purely discontinuous local martingale

starting from 0 for all ω, which does not belong to V .

HINT.– Modify example 2.7: replace jumps times tn = n by tn = n/(n+ 1).

THEOREM 2.31.– Every local martingale admits a decomposition:

M = M0 +M c +Md [2.57]

into the sum of a continuous local martingale M c ∈ M c
loc,0 and a purely discontinuous

local martingale Md ∈ M d
loc. This decomposition is unique up to indistinguishability.

REMARK 2.13.– If M ∈ M 2, then decomposition [2.57] coincides with the

decomposition into the continuous and purely discontinuous components, introduces

in example 2.5. This follows from the uniqueness of decomposition [2.57] and

lemma 2.23.

PROOF.– In order to prove the uniqueness, we have to check that the process N ∈
M c

loc,0 ∩ M d
loc vanishes except an evanescent set. By the definition of M d

loc, we have

N2 ∈ Mloc. Being a nonnegative process, N2 is a supermartingale by theorem 2.9.

Hence, 0 � EN2
t � EN2

0 = 0, i.e., Nt = 0 a.s. for every t ∈ R+.
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We turn to the proof of the existence. In view of the Gundy decomposition

(theorem 2.22) and lemma 2.24, it is enough to consider the case where the jumps of

M are bounded and M0 = 0. Put Tn := inf {t : |Mt| > n}, then MTn is bounded, in

particular, MTn ∈ M 2. It follows from section 2.7 that, for every n, there exists a

unique decomposition

MTn = Mn,c +Mn,d, Mn,c ∈ M 2,c, Mn,d ∈ M 2,d.

Its uniqueness and lemma 2.22 imply that:

Mn,c and (Mn,c)Tn are indistinguishable for every n = 1, 2, . . . , [2.58]

Mn−1,c and (Mn,c)Tn−1 are indistinguishable for every n = 2, 3, . . . . [2.59]

Let M c be obtained by the “gluing” procedure from {Mn,c}, {Tn}. By

proposition 2.9, the process M c is a.s. continuous. Moreover,

Mn,c and (M c)
Tn are indistinguishable for every n = 1, 2, . . .

in view of [2.58] and [2.59]. Hence, putting Md := M −M c, we have that

Mn,d and (Md)
Tn

are indistinguishable for every n = 1, 2, . . . .

Therefore, M c ∈ M c
loc and Md ∈ M d

loc by lemma 2.22. �

LEMMA 2.25.– For every local martingale M and for every t ∈ R+,∑
0<s�t

(ΔMs)
2 < +∞ a.s. [2.60]

PROOF.– Due to the Gundy decomposition (theorem 2.22) and inequality (a+ b)2 �
2(a2 + b2), a, b ∈ R, it is enough to consider two cases: M ∈ M 2

loc and M ∈
Mloc ∩ V . In the first case, we may use relation [2.49] in theorem 2.29, which allow

us to conclude that, for some localizing sequence (Tn),∑
0<s�Tn

(ΔMs)
2 < +∞ a.s.

for every n, which, obviously, implies [2.60]. In the second case [2.60] follows from

the inequality

∑
0<s�t

(ΔMs)
2 �

( ∑
0<s�t

|ΔMs|
)2

�
(
Var (M)t

)2
. �

This lemma permits us to give the following definition.
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DEFINITION 2.25.– The quadratic variation of a local martingale M ∈ Mloc is the

increasing process

[M,M ] := 〈M c,M c〉+ S
(
(ΔM)2

)
.

The quadratic covariation of local martingales M,N ∈ Mloc is the process with

finite variation

[M,N ] := 〈M c, N c〉+ S(ΔMΔN).

Recall that M c, N c ∈ M c
loc,0 ⊆ M 2

loc, so the angle brackets 〈M c,M c〉 and

〈M c, N c〉 are defined; see definition 2.23. As in the square-integrable case, the

process 〈M c, N c〉 is a.s. continuous. Hence, the processes Δ[M,N ] and ΔMΔN
are indistinguishable for every M,N ∈ Mloc. Note also that in the case M,N ∈ M 2

definition 2.25 coincides with definition 2.22; see remark 2.13.

Similarly to the square-integrable case, all relations between quadratic covariation

processes are understood up to indistinguishability, the form [M,N ] is symmetric and

bilinear, [M,NT ] = [M,N ]T for every stopping time T and every M,N ∈ Mloc.

Also, the Kunita–Watanabe inequalities [2.54] and [2.56] are still valid. It is less trivial

to generalize the first assertion of lemma 2.20.

LEMMA 2.26.– If M,N ∈ Mloc and M0 = N0 = 0 a.s., MN − [M,N ] is a local

martingale.

PROOF.– Due to polarization, it is enough to consider the case M = N . In its turn,

using the Gundy decomposition (theorem 2.22), we should check that:

M2 − [M,M ] ∈ Mloc, [2.61]

MN − [M,N ] ∈ Mloc, [2.62]

N2 − [N,N ] ∈ Mloc, [2.63]

where a local martingale M starts from 0 and has bounded jumps, and N ∈ Mloc∩V .

Since M ∈ M 2
loc, [2.61] follows from lemma 2.20 by localization. Using localization

again, we can assume that M is bounded and N ∈ Mloc ∩ A in [2.62]. Then, by
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lemma 2.11, MN − S(ΔMΔN) ∈ M , and it remains to note that N c = 0 by

lemma 2.24. Finally, by Fubini’s theorem, for every ω

N2
t =

∫
]0,t]

dNu

∫
]0,t]

dNv =

∫
]0,t]×]0,t]

dNudNv

=

∫
]0,t]×]0,t]

(
{u<v} + {u>v}

)
dNudNv +

∫
]0,t]×]0,t]

{u=v} dNudNv

= 2

∫
]0,t]

( ∫
]0,t]

{u<v} dNu

)
dNv +

∫
]0,t]

( ∫
]0,t]

{u=v} dNu

)
dNv

= 2

∫
]0,t]

Nv− dNv +

∫
]0,t]

ΔNv dNv,

i.e. N2 = 2N− ·N + S
(
(ΔN)2

)
. Now [2.63] follows from proposition 2.10 (4). �

The following lemma strengthens lemma 2.25.

LEMMA 2.27.– Let M be a local martingale. Then [M,M ]1/2 ∈ A +
loc.

PROOF.– In view of the inequality (a+b)1/2 � a1/2+b1/2, a, b ∈ R+, it is enough to

consider separately the cases where M is either a continuous or a purely discontinuous

local martingale.

In the first case, [M,M ] = 〈M,M〉 is a.s. continuous and, hence, [M,M ]1/2 ∈
V + is a.s. continuous. Putting Tn := inf {t : [M,M ]

1/2
t > n}, we get E[M,M ]

1/2
Tn

�
n, i.e.

(
[M,M ]1/2

)Tn ∈ A +.

In the second case, we have [M,M ] = S
(
(ΔM)2

)
. Using localization, we can

assume that M ∈ M . Put

Tn := inf {t : S((ΔM)2
)
t
� n2} ∧ inf {t : |Mt| > n}.

Again using the elementary inequality from the beginning of the proof, we get

{
S
(
(ΔM)2

)
Tn

}1/2

�
{
S
(
(ΔM)2

)
Tn−

}1/2

+ |ΔMTn | {Tn<∞}

� 2n+ |MTn
| {Tn<∞}.

Since the random variable on the right is integrable, the claim follows. �



118 Stochastic Calculus for Quantitative Finance

One of the fundamental results of the theory of martingales is the Burkholder–

Davis–Gundy inequality, which we formulate without proof. The case p = 1 is called

Davis’ inequality. Note that the previous lemma is a result of Davis’ inequality and

theorem 2.7.

THEOREM 2.32 (Burkholder–Davis–Gundy inequality).– Let M be a local

martingale, M0 = 0, T a stopping time, p � 1. There exist universal positive

constants cp and Cp (independent of T, M and a stochastic basis) such that

cpE[M,M ]
p/2
T � E(M∗

T )
p � CpE[M,M ]

p/2
T . [2.64]

COROLLARY 2.18.– Let M be a local martingale, M0 = 0, p � 1. Then

M ∈ H p ⇔ [M,M ]p/2 ∈ A +, [2.65]

M ∈ H p
loc ⇔ [M,M ]p/2 ∈ A +

loc. [2.66]

Here, H p
loc is the space of local martingales M such that there exists a localizing

sequence {Tn} with MTn ∈ H p for every n.

THEOREM 2.33.– Let X be an optional process. There exists a (necessarily unique)

purely discontinuous local martingale M such that

ΔM = X

(up to indistinguishability) if and only if

E(|XT | {T<∞}|FT−) < ∞ and E(XT {T<∞}|FT−) = 0 [2.67]

for every predictable stopping time T, the process S(X2) is well defined (see

definition 2.21) and

{S(X2)}1/2 ∈ A +
loc. [2.68]

PROOF.– The necessity of conditions [2.67] and [2.68] follows from theorem 2.10

and lemma 2.27, and the uniqueness of M is a consequence of the uniqueness in

theorem 2.31.

By theorem 1.17, there is a sequence (Tn) of stopping times such that

{X 
= 0} = {ΔS(X2) 
= 0} ⊆
⋃
n

�Tn�, [2.69]
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(where the equality is up to evanescent set), every Tn is strictly positive and either

predictable or totally inaccessible, and

�Tn� ∩ �Tm� = ∅, m 
= n. [2.70]

Put An = XTn {Tn<∞} �Tn,∞�. In view of [2.68], we have An ∈ Aloc, hence,

the compensator Ãn of An is defined. Put Mn := An − Ãn. By lemmas 2.8 and 2.9

(note that the assumptions of lemma 2.9 are valid because of [2.67]), we can assume

that the processes Ãn are continuous. Hence,

ΔMn = X �Tn�. [2.71]

By lemma 2.24, Mn ∈ M d
loc, hence, [Mn,Mm] = 0 for m 
= n due to [2.70] and

[2.71]. Put Nn := M1 + · · ·+Mn, then

[Nn, Nn] =

n∑
j=1

[M j ,M j ] = S(X2 ∪n
j=1

�Tj�)

and

[Nn+p −Nn, Nn+p −Nn] =

n+p∑
j=n+1

[M j ,M j ] = S(X2
∪n+p

j=n+1
�Tj�)

for every natural number p.

Let (Sk) be a localizing sequence such that E{S(X2)}1/2Sk
< ∞ for every k;

without loss of generality, Sk → ∞ for all ω. By Davis’ inequality,

E(Nn)∗Sk
� CE[Nn, Nn]

1/2
Sk

� CE{S(X2)}1/2Sk

(in particular, (Nn)Sk ∈ H 1) and

E(Nn+p −Nn)∗Sk
� CE[Nn+p −Nn, Nn+p −Nn]

1/2
Sk

� CE{S(X2 ∪∞
j=n+1

�Tj�)}1/2Sk
.

The expression on the right tends to 0 as n → ∞ by the theorem on dominated

convergence. Therefore, for every k, (Nn)Sk is a Cauchy sequence in H 1 and, hence,

by theorem 2.6, converges in H 1 to a limit, which we denote by Lk. It is easy to see

that Lk = (Lk)Sk and Lk−1 = (Lk)Sk−1 . So, using the “gluing” procedure, we can
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construct a process L ∈ H 1
loc = Mloc such that LSk = Lk for every k (all equalities

are up to indistinguishability). Now note that, by the construction, for every k,

E sup
s�Sk

|Nn
s − Ls| → 0.

On the other hand, for every t ∈ R+,

P
(
sup
s�t

|Nn
s − Ls| > ε

)
� P

(
sup
s�Sk

|Nn
s − Ls| > ε

)
+ P(Sk < t).

Passing to the limit as n → ∞ and then as k → ∞, we get

sup
s�t

|Nn
s − Ls| P−→ 0.

Choosing a subsequence converging almost surely and using [2.69]–[2.71], we

obtain that the processes ΔL and X are indistinguishable. It remains to set M := Ld.

�

EXERCISE 2.45.– Show that the process L in the proof of theorem 2.33 is itself a

purely discontinuous martingale.



3

Stochastic Integrals

Unless otherwise stated, we will assume in this chapter that a stochastic basis

B = (Ω,F ,F = (Ft)t∈R+ ,P) satisfying the usual conditions is given.

3.1. Stochastic integrals with respect to local martingales

The purpose of this section is to define a stochastic integral process
∫
]0,t]

Hs dMs

for a local martingale M = (Mt) for a wide class of possible predictable integrands

H = (Ht). Here we limit ourselves to those H , for which the integral process is

a local martingale (we know from example 2.3 that this is not always the case). At

least continuous martingale are not processes with finite variations (corollary 2.14),

therefore, an integral with respect to such processes cannot be defined as a pathwise

Lebesgue–Stieltjes integral. The construction introduced below is called the stochastic
integral. The integral process, as in the case of the Lebesgue–Stieltjes integral, will be

denoted by H ·M = (H ·Mt). To distinguish from the stochastic integral, the pathwise

Lebesgue–Stieltjes integral (which is defined in theorem 2.11) will be denoted by

H
s· M (if M ∈ V ).

First, let us define the stochastic integral H ·M for square-integrable martingales

M and for predictable H , such that the integral process H · M is again a square-

integrable martingale. For this purpose, for a given M ∈ M 2, we introduce the space

L2(M) : =

{
H predictable : E

∞∫
0

H2
s d〈M,M〉s < ∞

}

=

{
H predictable :

∫
Ω×R+

H2 dμ〈M,M〉 < ∞
}
,
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where μ〈M,M〉 is the Doléans measure of the integrable increasing process 〈M,M〉.
In view of the last equality, L2(M) is none other than the space L2 of measurable

square-integrable functions on the measurable space (Ω× R+,P, μ〈M,M〉|P).

Let us also introduce the class Λ of (“simple”) predictable processes of the form:

H = η �0� +

n∑
i=1

ξi �ti−1,ti�, [3.1]

where η is a bounded F0-measurable random variable, n = 0, 1, . . . , 0 = t0 < t1 <
· · · < tn < +∞, ξi (i = 1, . . . , n) are bounded Fti−1

-measurable random variables.

It is clear that Λ ⊆ L2(M) for every M ∈ M 2. For H ∈ Λ of the form [3.1] and for

M ∈ M 2, let us define the process H ·M = (H ·Mt) by

H ·Mt :=

n∑
i=1

ξi
(
Mti∧t −Mti−1∧t

)
.

LEMMA 3.1.– Let H ∈ Λ and M ∈ M 2. Then, H ·M ∈ M 2 and

E(H ·M∞)2 = E

∞∫
0

H2
s d〈M,M〉s.

If N ∈ M 2, then

E(H ·M∞)N∞ = E

∞∫
0

Hs d〈M,N〉s.

PROOF.– Obviously, H ·M is a martingale. Since H ·Mt = H ·Mtn for t � tn, we

have H ·M ∈ M . Furthermore, let 1 � i < j � n. Then i � j − 1 and

Eξiξj
(
Mti∧t −Mti−1∧t

)(
Mtj∧t −Mtj−1∧t

)
= EE

[
ξiξj

(
Mti∧t −Mti−1∧t

)(
Mtj∧t −Mtj−1∧t

)∣∣∣Ftj−1

]
= Eξiξj

(
Mti∧t −Mti−1∧t

)
E
(
Mtj∧t −Mtj−1∧t

∣∣Ftj−1

)
= 0.
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Hence,

E(H ·M∞)2 = E
n∑

i=1

ξ2i
(
Mti −Mti−1

)2
= E

n∑
i=1

ξ2i
(
M2

ti −M2
ti−1

)

= E
n∑

i=1

ξ2i
(〈M〉ti − 〈M〉ti−1

)
= E

∞∫
0

H2
s d〈M,M〉s

(to prove the second equality, we have used exercise 2.41). If N ∈ M 2, we have

Eξi
(
Mti −Mti−1

)
N∞ = Eξi

(
Mti −Mti−1

)
Nti

and

Eξi
(
Mti −Mti−1

)
Nti−1 = 0.

Similarly, we get

E(H ·M∞)N∞ = E
n∑

i=1

ξi
(
Mti −Mti−1

)
N∞

= E
n∑

i=1

ξi
(
Mti −Mti−1

)(
Nti −Nti−1

)
= E

n∑
i=1

ξi
(
MtiNti −Mti−1

Nti−1

)

= E
n∑

i=1

ξi
(〈M,N〉ti − 〈M,N〉ti−1

)
= E

∞∫
0

Hs d〈M,N〉s. �

THEOREM 3.1.– Let M ∈ M 2. The mapping H � H · M from Λ to M 2 extends

uniquely to a linear isometry of L2(M) into M 2. This extension is also denoted by

H � H ·M . Moreover, H ·M0 = 0 and Δ(H ·M) = HΔM (up to an evanescent

set) for every H ∈ L2(M).

PROOF.– Obviously, the mapping H � H · M from Λ to M 2 is linear. It is also

an isometry by lemma 3.1. Hence, to prove the first assertion, it is enough to show

that Λ is dense in L2(M). The last statement follows from the facts that in any L2-

space (with respect to a finite measure), an arbitrary function can be approximated by

bounded ones, the bounded function can be approximated by a finite-valued function,
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and an indicator of a set can be approximated by an indicator of a set from a given

algebra that generates the σ-algebra, and from theorem 1.10.

Since H ·M0 = 0 is true for H ∈ Λ, it holds for every H ∈ L2(M).

It is clear that Δ(H · M) = HΔM for all H ∈ Λ. Let H be the class of those

bounded predictable processes H for which this equality holds (up to an evanescent

set). Since the mapping H � H ·M is linear, it is obvious that H is a linear space

containing constants. Let a uniformly bounded sequence {Hn} in H converges to H
for all (ω, t). Then, on the one hand,

Δ(Hn ·M) = HnΔM → HΔM.

On the other hand, Hn converges to H in L2(M). Therefore, Hn ·M converges

to H ·M in M 2 due to the isometry property. By lemma 2.14, there is a subsequence

nk such that, for a.a. ω,

Δ(Hnk ·M) → Δ(H ·M).

Therefore, HΔM and Δ(H · M) are indistinguishable. A monotone class

argument (theorem A.3) and theorem 1.10 imply that H contains all bounded

predictable processes.

If H is an arbitrary predictable process in L2(M), then the equality HΔM =
Δ(H · M) is proved quite similar to the above by passing to the limit from Hn =
H {|H|�n}. �

REMARK 3.1.– It is essential for the above argument that Hn converges to H
pointwise. If Hn converges to H only in L2(M), then we can assert, passing to a

subsequence, that Hnk
t (ω) → Ht(ω) for μ〈M,M〉-a.a. (ω, t). It does not follow

directly (but can be proved) from the last relation that for almost all ω
Hnk

t (ω)ΔMt(ω) → Ht(ω)ΔMt(ω) for all t.

DEFINITION 3.1.– Let M ∈ M 2 and H ∈ L2(M). The process H ·M determined in

theorem 3.1 is called the stochastic integral of H with respect to M .

The stochastic integral process is determined up to an evanescent set and does not

depend on the choice of versions of H and M . The same refers to other constructions

of stochastic integrals presented below in this chapter. Thus, all pointwise relations

containing stochastic integral processes are understood only up to an evanescent set.

EXERCISE 3.1.– Let M ∈ M 2 and T be a stopping time.

1) Show that

�0,T � ·M = �0,T � ·M = MT −M0.
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2) Let T be predictable. Find �0,T � ·M and �0,T � ·M .

The next theorem provides a useful characterization of the stochastic integral.

THEOREM 3.2.– Let M ∈ M 2 and H ∈ L2(M). Then, for every N ∈ M 2,

E

∞∫
0

|Ht| dVar (〈M,N〉)t < ∞, [3.2]

E(H ·M∞)N∞ = EH
s· 〈M,N〉∞, [3.3]

〈H ·M,N〉 = H
s· 〈M,N〉. [3.4]

If L ∈ M 2 and EL∞N∞ coincides with the expression on the right in [3.3] for

every N ∈ M 2, then L = H ·M . If L ∈ M 2, L0 = 0 and 〈L,N〉 = H
s· 〈M,N〉

for every N ∈ M 2, then L = H ·M .

PROOF.– [3.2] follows directly from the Kunita–Watanabe inequality [2.55]. For fixed

M,N ∈ M 2, consider the functional

H � E
[
(H ·M∞)N∞ −H

s· 〈M,N〉∞
]

on L2(M). It is linear and continuous (take [2.55] into account). By lemma 3.1, it

vanishes on Λ, and it was shown in the proof of theorem 3.1 that Λ is dense in L2(M).
It follows that the functional vanishes identically, which proves [3.3].

The process H
s· 〈M,N〉 is predictable and belongs to A due to [3.2]. Hence, to

prove [3.4], it is enough to check that (H · M)N − H
s· 〈M,N〉 ∈ M . Let T be a

stopping time. Then

E(H
s· 〈M,N〉T ) = E(H

s· 〈M,NT 〉)∞ = E(H ·M∞)NT = E(H ·MT )NT ,

where we make use of [3.3] in the second equality. Lemma 2.10 yields the claim.

Last two assertions of the theorem are obvious. �

COROLLARY 3.1.– Let M ∈ M 2, H ∈ L2(M), and T be a stopping time. Then

(H ·M)T = H ·MT = (H �0,T �) ·M.

PROOF.– The assertion follows directly from theorem 3.2. �
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COROLLARY 3.2.– Let M,N ∈ M 2, H ∈ L2(M) ∩ L2(N), α, β ∈ R. Then, H ∈
L2(αM + βN) and H · (αM + βN) = α(H ·M) + β(H ·N).

PROOF.– It follows from the Kunita–Watanabe inequality [2.55] with K = H that

H ∈ L2(αM + βN). Now the equality H · (αM + βN) = α(H ·M) + β(H · N)
follows from theorem 3.2. �

COROLLARY 3.3.– Let H be a stable subspace of M 2, M ∈ H , H ∈ L2(M).
Then, H ·M ∈ H .

PROOF.– Let N ∈ H ⊥. By theorem 2.27, M and N are strongly orthogonal. Hence,

〈M,N〉 = 0 by lemma 2.16. Theorem 3.2 implies 〈H · M,N〉 = 0, hence, by

lemma 2.16, H ·M and N are strongly orthogonal and H ·M ∈ H . �

COROLLARY 3.4.– Let M ∈ M 2 and H ∈ L2(M). Then, H ∈ L2(M c) ∩ L2(Md),
(H ·M)c = H ·M c, (H ·M)d = H ·Md.

PROOF.– The first assertion follows from the equality

〈M,M〉 = 〈M c,M c〉 + 〈Md,Md〉. By corollary 3.2, H ·M = H ·M c +H ·Md,

and H ·M c ∈ M 2,c and H ·Md ∈ M 2,d by corollary 3.3. �

COROLLARY 3.5.– Let M ∈ M 2, M0 = 0. Then the smallest stable subspace

containing M is H := {H ·M : H ∈ L2(M)}. Let N ∈ M 2. There is a process K

in L2(M) such that 〈M,N〉 = K
s· 〈M,M〉. For any K with these properties, the

projection N onto H is K ·M .

PROOF.– Since M0 = 0, we have M = 1 · M ∈ H . By corollary 3.3, any stable

subspace containing M , contains H as well. Therefore, to prove the first assertion,

it is enough to show that H is a stable subspace. Since the mapping H � H · M
from L2(M) into M 2 is a linear isometry, H is a norm-closed linear subspace of

M 2. Next, it follows from corollary 3.1 that H is stable under stopping. The last

property from the definition of a stable subspace is trivially true. Hence, H is a stable

subspace.

Let N ∈ M 2. As we have just proved, the projection of N onto H has the form

K ·M for some K ∈ L2(M). Since N−K ·M ∈ H ⊥, we have 〈N−K ·M,M〉 = 0,

hence 〈M,N〉 = K
s· 〈M,M〉 in view of [3.4]. Conversely, if K ∈ L2(M) and

〈M,N〉 = K
s· 〈M,M〉, then 〈N −K ·M,M〉 = 0 and 〈N −K ·M,H ·M〉 = H

s·
〈N −K ·M,M〉 = 0 due to [3.4]. Thus, N −K ·M ∈ H ⊥. �

COROLLARY 3.6.– Let M ∈ M 2, H ∈ L2(M). Then, for every N ∈ M 2,

E

∞∫
0

|Ht| dVar ([M,N ])t < ∞ and [H ·M,N ] = H
s· [M,N ].
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If L ∈ M 2, L0 = 0 and [L,N ] = H
s· [M,N ] for every N ∈ M 2, then

L = H ·M .

PROOF.– The first assertion follows from the Kunita–Watanabe inequality [2.56], the

definition of quadratic covariation, corollary 3.4, [3.4], and theorem 3.1. The second

assertion reduces to the final statement in theorem 3.2 with the use of lemma 2.20 and

theorem 2.21 (2). �

COROLLARY 3.7.– Let M ∈ M 2, H ∈ L2(M), and K be a predictable process. Then

K ∈ L2(H ·M) if and only if KH ∈ L2(M). In this case, K · (H ·M) = (KH) ·M .

PROOF.– The assertion follows from theorem 3.2 and a similar property of the

Lebesgue–Stieltjes integral, see theorem 2.12 (4). �

THEOREM 3.3.– Let M ∈ M 2 ∩ V , H ∈ L2(M) ∩ Lvar(M) and H
s· M ∈ Aloc.

Then H ·M = H
s· M .

PROOF.– By lemmas 2.24 and 2.23, M ∈ M 2,d. Hence, by corollary 3.3, H · M ∈
M 2,d ⊆ M d

loc. On the other hand, H
s· M ∈ Mloc∩Aloc ⊆ M d

loc by proposition 2.10

(4) and lemma 2.24. It remains to note that, by theorem 3.1, Δ(H ·M) = HΔM =

Δ(H
s· M). �

Taking corollary 3.5 into account, we may conjecture that the smallest stable

subspace containing a finite number of square-integrable martingales M1,. . . ,Mn,

where M1
0 = · · · = Mn

0 = 0, consists of sums

{H1 · M1 + · · · + Hn · Mn : H1 ∈ L2(M1), . . . , Hn ∈ L2(Mn)}. The following

example shows that it is not the case, in general. Namely, the subspace of sums is not

necessarily norm-closed. In fact, the smallest stable subspace containing

M1,. . . ,Mn, is the closure of the linear subspace

{H1 ·M1 + · · ·+Hn ·Mn : H1 ∈ L2(M1), . . . , Hn ∈ L2(Mn)} in M 2. It can be

also described with the use of so-called vector stochastic integral, see [SHI 02].

EXAMPLE 3.1.– Put At := t ∧ 1, t ∈ R+. Let M and M̃ be martingales from M 2

such that M0 = M̃0 = 0, 〈M〉 = 〈M̃〉 = A and 〈M, M̃〉 = 0, see exercise 3.2

concerning the existence of such processes. Let us also take a measurable function

Ks with values in (0, 1). We can consider K = (Ks) as a (deterministic) bounded

predictable stochastic process. Thus, we can define:

N := K ·M + (1−K) · M̃ ∈ M 2.

We will show that M̃ always belongs to the smallest stable subspace H containing

M and N , while a representation M̃ = H ·M+G ·N with H ∈ L2(M), G ∈ L2(N),
exists only under an additional assumption on K.
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Put

Hn := −K {K�1− 1
n}/(1−K), Gn := {K�1− 1

n}/(1−K).

Then, Hn and Gn are bounded and predictable (deterministic, in fact) stochastic

processes, and we can define

M̃n := Hn ·M +Gn ·N,

moreover, M̃n ∈ H by corollary 3.3. Due to corollary 3.7, we get

M̃n = Hn ·M + (GnK) ·M + (Gn(1−K)) · M̃ = {K�1− 1
n} · M̃.

Owing to [3.4],

〈M̃ − M̃n, M̃ − M̃n〉 = 〈 {K>1− 1
n} · M̃, {K>1− 1

n} · M̃〉 = {K>1− 1
n}

s· 〈M̃, M̃〉

and

E(M̃∞ − M̃n
∞)2 = E〈M̃ − M̃n, M̃ − M̃n〉∞ = E

1∫
0

{Kt>1− 1
n} dt → 0

as n → ∞. Thus, M̃ ∈ H .

Assume now that M̃ = H ·M +G ·N , where H ∈ L2(M) and G ∈ L2(N). By

corollary 3.7,

M̃ = (H +GK) ·M + (G(1−K)) · M̃,

hence

(H +GK) ·M + (G(1−K)− 1) · M̃ = 0.

Taking into account [3.4], we have

0 = 〈(H +GK) ·M + (G(1−K)− 1) · M̃〉
= (H +GK)2

s· 〈M,M〉+ [2(H +GK)(G(1−K)− 1)]
s· 〈M, M̃〉

+(G(1−K)− 1)2
s· 〈M̃, M̃〉

= [(H +GK)2 + (G(1−K)− 1)2]
s· A.
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In particular,

Gt =
1

1−Kt
i Ht = − Kt

1−Kt
dP dAt-a.e.

The condition H ∈ L2(M) implies:

1∫
0

(
Kt

1−Kt

)2

dt < ∞.

This is not always true. For example, take Ks = 1 − s for s ∈ (0, 1/2) and

Ks = 1/2 for other s.

EXERCISE 3.2.– Construct martingales M and M̃, satisfying the assumptions in

example 3.1.

HINT.– Take two independent Wiener processes W and W̃ and stop them at time 1.

The next step in defining a stochastic integral is to localize definition 3.1. To this

aim, given M ∈ M 2
loc, we introduce a space

L2
loc(M) : =

{
H predictable : H2 ∈ Lvar(〈M,M〉)}

=

{
H predictable :

t∫
0

H2
s d〈M,M〉s < ∞ P-a.s. for every t ∈ R+

}
.

DEFINITION 3.2.– Let M ∈ M 2
loc and H ∈ L2

loc(M). The stochastic integral process

of H with respect to M is a locally square-integrable martingale N such that the

following is true: if T is a stopping time such that MT ∈ M 2 and H ∈ L2(MT ),
then

NT = H ·MT .

The stochastic integral process will be denoted by H ·M .

PROPOSITION 3.1.– The process N with the properties as in definition 3.2 exists and

is unique (up to an evanescent set).

PROOF.– Let M ∈ M 2
loc and H ∈ L2

loc(M). Since H2 s· 〈M,M〉 is a predictable

process, it belongs to A +
loc by lemma 2.5. Hence, there is a localizing sequence {Tn}

such that

MTn ∈ M 2 and H2 s· 〈M,M〉Tn ∈ A + for every n.
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In particular,

H ∈ L2(MTn) for every n.

The uniqueness follows. Next, by corollary 3.1,

H ·MTn and
(
H ·MTn

)Tn
are indistinguishable for every n = 1, 2, . . . ,

and

H ·MTn−1 and
(
H ·MTn

)Tn−1
are indistinguishable for every n = 2, 3, . . . .

The “gluing” procedure yields an adapted càdlàg process N such that:

H ·MTn and NTn are indistinguishable for every n = 1, 2, . . . .

Since H ·MTn ∈ M 2, we have N ∈ M 2
loc.

Let now T be a stopping time, MT ∈ M 2 and H ∈ L2(MT ). Then MT∧Tn ∈
M 2 and H ∈ L2(MT∧Tn) for every n. By construction and using corollary 3.1, we

get:

NT∧Tn =
(
H ·MTn

)T
= H ·MT∧Tn =

(
H ·MT

)Tn
.

Hence, NT = H ·MT . Thus, the existence of N from definition 3.2 is also proved.

�

Note that the process H · M from definition 3.2 coincides with the previously

introduced in theorem 3.1 process H ·M in the case M ∈ M 2, H ∈ L2(M). So our

notation is not ambiguous.

It is easy to verify that the stochastic integral H ·M introduced in definition 3.2 is

linear with respect to each of two arguments, and we have, for every M ∈ M 2
loc and

H ∈ L2
loc(M),

– H ·M0 = 0 and Δ(H ·M) = HΔM (up to an evanescent set);

– for every N ∈ M 2
loc, the processes H

s· 〈M,N〉, H s· [M,N ] are well defined

and 〈H ·M,N〉 = H
s· 〈M,N〉, [H ·M,N ] = H

s· [M,N ];

– (H ·M)T = H ·MT = (H �0,T �) ·M for every stopping time T ;

– H ∈ L2
loc(M

c) ∩ L2
loc(M

d), (H ·M)c = H ·M c, (H ·M)d = H ·Md;



Stochastic Integrals 131

– if K is a predictable process, then K ∈ L2
loc(H · M) if and only if KH ∈

L2
loc(M). In this case, K · (H ·M) = (KH) ·M ;

– if, additionally, M ∈ V , H ∈ Lvar(M), and H
s· M ∈ Aloc, then H ·M = H

s·
M .

EXERCISE 3.3.– Prove the above assertions.

It is also useful to note that, for M ∈ M 2
loc, the angle bracket 〈M,M〉 is the

compensator of the square bracket [M,M ], see lemma 2.26. Therefore, by

theorem 2.21, we can replace 〈M,M〉 by [M,M ] in the definition of L2(M) and

L2
loc(M).

We now turn to the definition of the stochastic integral with respect to an arbitrary

local martingale M . One possibility is to use the Gundy decomposition (theorem 2.22)

M = M0 + M1 + M2 into the sum of a local martingale M1 with bounded jumps

(and, hence, locally square-integrable) and a local martingale with bounded variation

M2, and to define H ·M as H ·M1 +H
s· M2. Though this approach is natural, we

use the other approach based on the decomposition [2.57] of a local martingale into

the sum of the continuous and purely discontinuous martingale components and on

theorem 2.33, characterizing the jumps of purely discontinuous martingales.

Let M ∈ Mloc and p � 1. Define the classes of integrands Lp(M) and Lp
loc(M)

by

Lp(M) :=
{
H predictable : H2 ∈ Lvar([M,M ]) and

(
H2 s· [M,M ]

)p/2 ∈ A +
}
,

Lp
loc(M) :=

{
H predictable : H2 ∈ Lvar([M,M ]) and

(
H2 s· [M,M ]

)p/2 ∈ A +
loc

}
.

It is clear that Lp(M) ⊆ Lp
loc(M), Lp(M) ⊆ Lr(M) and Lp

loc(M) ⊆ Lr
loc(M),

if p � r � 1. In view of the above remark, the class L2(M) (respectively L2
loc(M))

has the previous meaning in the case M ∈ M 2 (respectively M ∈ M 2
loc).

Let H be a predictable locally bounded process. It follows from lemma 2.27 that

H ∈ L1
loc(M) for any M ∈ Mloc.

EXERCISE 3.4.– Prove that Lp(M) and Lp
loc(M) are linear spaces for every p � 1.

DEFINITION 3.3.– Let M ∈ Mloc and H ∈ L1
loc(M). The stochastic integral process

H ·M is the unique element in Mloc satisfying

H ·M0 = 0, (H ·M)c = H ·M c, Δ(H ·M) = HΔM.

In this definition, the process H ·M c is understood as in definition 3.2.
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PROPOSITION 3.2.– Definition 3.3 is correct.

PROOF.– According to the definition of the quadratic variation,

H2 s· [M,M ] = H2 s· 〈M c,M c〉+ S
(
H2(ΔM)2

)
. [3.5]

In particular, H2 s· 〈M c,M c〉 ∈ V +. The process H2 s· 〈M c,M c〉 is a.s.

continuous. Hence, H2 s· 〈M c,M c〉 ∈ A +
loc, i.e., H ∈ L2

loc(M
c). Therefore, the

integral H · M c is defined and is a continuous local martingale, which follows from

Δ(H ·M c) = HΔM c = 0.

Put X := HΔM . Let us check that X satisfies the assumptions of theorem 2.33.

The relation [2.68] is obvious from the assumption H ∈ L1
loc(M) and [3.5]. Let T be

a predictable stopping time. By theorem 2.10 and proposition 1.11, a.s.

E(|XT | {T<∞}|FT−) = |HT | {T<∞}E(|ΔMT | {T<∞}|FT−) < ∞

and

E(XT {T<∞}|FT−) = HT {T<∞}E(ΔMT {T<∞}|FT−) = 0.

Hence, [2.67] is also satisfied. We conclude from theorem 2.33 that there exists an

N ∈ M d
loc such that ΔN = HΔM . Thus, we can take H ·M c + N as H ·M . The

uniqueness is evident from theorem 2.31. �

Definition 3.3 of the stochastic integral coincides with previous definition 3.2 in

the case M ∈ M 2
loc, H ∈ L2

loc(M). This follows from the above mentioned properties

of the stochastic integral in the sense of definition 3.2.

We now turn to properties of the stochastic integral that we just defined. The first

assertion is an immediate consequence of definition 3.3 and [3.5].

PROPOSITION 3.3.– Let M ∈ Mloc and H ∈ L1
loc(M). Then, H ∈ L1

loc(M
c) ∩

L1
loc(M

d), (H ·M)c = H ·M c, (H ·M)d = H ·Md.

The next proposition follows from the properties of the stochastic integral in the

sense of definition 3.2, exercise 3.4 and definition 3.3.

PROPOSITION 3.4.– Let M ∈ Mloc, H
1, H2 ∈ L1

loc(M) and α, β ∈ R. Then, αH1+
βH2 ∈ L1

loc(M) and (αH1 + βH2) ·M = α(H1 ·M) + β(H2 ·N).

Next two propositions are proved similarly.

PROPOSITION 3.5.– Let M,N ∈ Mloc, H ∈ L1
loc(M) ∩ L1

loc(N), α, β ∈ R. Then,

H ∈ L1
loc(αM + βN) and H · (αM + βN) = α(H ·M) + β(H ·N).
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PROPOSITION 3.6.– Let M ∈ Mloc, H ∈ L1
loc(M), and T be a stopping time. Then

(H ·M)T = H ·MT = (H �0,T �) ·M.

EXERCISE 3.5.– Prove propositions 3.5 and 3.6.

THEOREM 3.4.– Let M ∈ Mloc and H ∈ L1
loc(M).

1) For every N ∈ Mloc,

H ∈ Lvar([M,N ]) and [H ·M,N ] = H
s· [M,N ].

In particular,

[H ·M,H ·M ] = H2 s· [M,M ]. [3.6]

If L ∈ Mloc, L0 = 0 and [L,N ] = H
s· [M,N ] for every N ∈ Mloc, then

L = H ·M .

2) For p � 1,

H ·M ∈ H p ⇔ H ∈ Lp(M),

H ·M ∈ H p
loc ⇔ H ∈ Lp

loc(M).

PROOF.–

1) That H ∈ Lvar([M,N ]) holds follows from the Kunita–Watanabe inequality

[2.54] (we have mentioned in section 2.8 that it is also true for M,N ∈ Mloc). Next,

due to properties of the stochastic integral in the sense of definition 3.2,

[H ·M,N ] = 〈(H ·M)c, N c〉+ S(Δ(H ·M)ΔN)

= 〈H ·M c, N c〉+ S(HΔMΔN)

= H
s· 〈M c, N c〉+H

s· S(ΔMΔN) = H
s· [M,N ].

The last assertion is immediate.

2) Both assertions follow immediately from corollary 2.18 and [3.6]. �

PROPOSITION 3.7.– Let M ∈ Mloc, H ∈ L1
loc(M), K be a predictable process,

p � 1. Then,

K ∈ Lp(H ·M) ⇔ KH ∈ Lp(M),

K ∈ Lp
loc(H ·M) ⇔ KH ∈ Lp

loc(M),

and any one of these relations implies K · (H ·M) = (KH) ·M .
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EXERCISE 3.6.– Prove proposition 3.7.

If a local martingale M is also a process with finite variation, then there are two

classes of predictable integrands, L1
loc(M) and Lvar(M), to which correspond two

kinds of integrals, H · M ∈ Mloc and H
s· M ∈ V . The next theorem gives a full

description of relationships between them. Recall that Mloc∩V ⊆ Aloc (lemma 2.6),

and also the fact that H ∈ Lvar(M) and H
s· M ∈ Aloc imply H

s· M ∈ Mloc

(proposition 2.10 (4)).

THEOREM 3.5.– Let M ∈ Mloc ∩ V .

1) If H ∈ L1
loc(M) ∩ Lvar(M), then H ·M = H

s· M .

2) If H ∈ L1
loc(M) \ Lvar(M), then H ·M /∈ V .

3) If H ∈ Lvar(M) \ L1
loc(M), then H

s· M /∈ Mloc.

The most typical situation is described, of course, in the first statement of the

theorem. For example, if H is a locally bounded predictable process, then

H ∈ L1
loc(M) ∩ Lvar(M) for every M ∈ Mloc ∩ V . For an example of a local

martingale M ∈ Mloc ∩ V and a process H ∈ Lvar(M) such that H
s· M /∈ Mloc,

see example 2.3; it follows from (1) that H /∈ L1
loc(M) in this example. An example

of a local martingale M ∈ Mloc ∩ V and a process H ∈ L1
loc(M) \ Lvar(M) will be

constructed after the proof of the theorem.

PROOF.–

1) Let H ∈ L1
loc(M)∩Lvar(M). By the definition of L1

loc(M), there is a localizing

sequence {Sn} such that:

E(H2 s· [M,M ]Sn)
1/2 < ∞

for each n. Put

Tn := Sn ∧ inf {t : Var (H
s· M)t � n}.

Then Tn ↑ ∞ a.s. due to the condition H ∈ Lvar(M), and

Var (H
s· M)Tn � n+ |HTnΔMTn {Tn<∞}| � n+ (H2 s· [M,M ]Sn)

1/2.

The right-hand side has a finite expectation, hence H
s· M ∈ Aloc.

Next, by proposition 2.10 (4), H
s· M ∈ Mloc and, moreover, by lemma 2.24,

H
s· M ∈ M d

loc. Since M ∈ M d
loc by lemma 2.24, we have (H ·M)c = H ·M c = 0.



Stochastic Integrals 135

Moreover, Δ(H
s· M) = HΔM . Therefore, H

s· M coincides with H ·M according

to the definition of the latter integral.

2) Assume that H ∈ L1
loc(M) and H ·M ∈ V . Put A :=

∑
0<s�· ΔMs and recall

that A ∈ Aloc and M = A−Ã, where Ã is the compensator of A, see proposition 2.10

(5). Since H · M ∈ Mloc by the definition of the integral and H · M ∈ V by the

assumption, we get H ·M ∈ Aloc by lemma 2.6. But we also have Δ(H ·M) = HΔM

and, hence, the process H
s· A is defined. Moreover,

Var (H
s· A) =

∑
0<s�·

|HsΔAs| =
∑

0<s�·
|HsΔMs| =

∑
0<s�·

|Δ(H ·M)s|

� Var (H ·M),

where H
s· A ∈ Aloc. It follows from theorem 2.21 (2) that H ∈ Lvar(Ã). Thus,

H ∈ Lvar(M).

3) Assume that H ∈ Lvar(M) and H
s· M ∈ Mloc. Then H

s· M ∈ Aloc by

lemma 2.6. As we noted above, M ∈ M d
loc, therefore, [M,M ] = S

(
(ΔM)2

)
and

(H2 s· [M,M ])1/2 =
{
S
(
(HΔM)2

)}1/2

� S
(|HΔM |)

� Var (H
s· M) ∈ A +

loc,

hence H ∈ L1
loc(M). �

EXAMPLE 3.2.– Let ξ1, . . . , ξn, . . . be independent random variables on a complete

probability space (Ω,F ,P). Moreover, P(ξn = ±2−n) = 1/2. Put tn = n/(n + 1),
Ft := σ{ξ1, . . . , ξn, . . . : tn � t} ∨ σ{N }, where N consists of null sets from F ,

Mt :=
∑

n : tn�t

ξn.

It is clear that M = (Mt) is a martingale and

[M,M ]t =
∑

n : tn�t

2−2n, Var (M)t =
∑

n : tn�t

2−n � 1,

so that M ∈ A . Let us define deterministic functions H = (Ht) as follows: Htn =
2n/n, n = 1, 2, . . . and Ht = 0, if t /∈ {t1, . . . , tn, . . . }. Then

H2 s· [M,M ]t =
∑

n : tn�t

22n

n2
2−2n =

∑
n : tn�t

n−2 � π2

6
.
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It follows that H ∈ Lp(M) for every p � 1. However,

1∫
0

|Hs| dVar (M)s =

∞∑
n=1

2n

n
2−n =

∞∑
n=1

1

n
= ∞,

so that H /∈ Lvar(M).

3.2. Semimartingales. Stochastic integrals with respect to semimartingales:
locally bounded integrands. Itô’s formula

DEFINITION 3.4.– An adapted càdlàg process X = (Xt)t∈R+ is called a

semimartingale if X admits a decomposition:

X = X0 +M +A, M ∈ Mloc, A ∈ V . [3.7]

The class of all semimartingales is denoted by S .

Trivial examples of semimartingales are, of course, local martingales and

processes with finite variation. More interesting examples of semimartingales are

submartingales and supermartingales, see the Doob–Meyer decomposition

(theorem 2.25).

The decomposition [3.7] is not unique. However, it follows from corollary 2.14

that if there is a decomposition [3.7] with a predictable A, then such a decomposition

is unique (up to an evanescent set).

DEFINITION 3.5.– A semimartingale X is called a special semimartingale if there

exists a decomposition [3.7] with a predictable A. This decomposition is called the

canonical decomposition of a special semimartingale. The class of all special

semimartingales is denoted by Sp.

Local martingales, submartingales and supermartingales are special

semimartingales. Theorem 2.21 (i) asserts that a process with finite variation is a

special semimartingale if and only if it is a process of locally integrable variation.

Before we provide a characterization of special semimartingales, let us prove a

lemma that will be useful later as well.

LEMMA 3.2.– For every semimartingale X and for every t ∈ R+,∑
0<s�t

(ΔXs)
2 < +∞ a.s.
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PROOF.– Let X = X0 +M +A, M ∈ Mloc, A ∈ V . By the Schwarz inequality,

( ∑
0<s�t

(ΔXs)
2
)1/2

�
( ∑
0<s�t

(ΔMs)
2
)1/2

+
( ∑
0<s�t

(ΔAs)
2
)1/2

. [3.8]

It remains for us to note that, by lemma 2.25,∑
0<s�t

(ΔMs)
2 < +∞ a.s.

and ∑
0<s�t

(ΔAs)
2 �

( ∑
0<s�t

|ΔAs|
)2

�
{
Var (A)t

}2
< +∞. [3.9]

�

THEOREM 3.6.– Let X be a semimartingale. The following statements are

equivalent:

1) X is a special semimartingale;

2) there exists a decomposition [3.7] with A ∈ Aloc;

3) A ∈ Aloc in every decomposition [3.7];

4) (X −X0)
∗ ∈ A +

loc;

5)
{
S((ΔX)2)

}1/2 ∈ A +
loc;

6) (ΔX)∗ ∈ A +
loc.

PROOF.– (1)⇒ (2) follows from lemma 2.5.

(2)⇒(1) Let X admit a decomposition [3.7] with A ∈ Aloc. By theorem 2.21 (1),

there exists the compensator Ã of A. Then the decomposition X = X0 + (M + A−
Ã) + Ã is a decomposition of the form [3.7] with a predictable process with finite

variation.

(2)⇒(4) Let X admit a decomposition [3.7] with A ∈ Aloc. Then, (X −X0)
∗ �

M∗ +A∗ � M∗ +Var (A). By lemma 2.7, M∗ ∈ A +
loc, and (4) follows.

(4)⇒(6) follows from the inequality (ΔX)∗ � 2(X −X0)
∗.
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(6)⇒(3) Let us take any decomposition [3.7]. Since (ΔA)∗ � (ΔM)∗ + (ΔX)∗

and (ΔM)∗ ∈ A +
loc by lemma 2.7, we have (ΔA)∗ ∈ A +

loc. Hence, there exists a

localizing sequence {Sn} such that:

E sup
s�Sn

|ΔAs| < ∞

for every n. Put

Tn := Sn ∧ inf {t : Var (A) � n}.

Then Tn ↑ ∞ a.s. and

Var (A)Tn � n+ |ΔATn {Tn<∞}| � n+ sup
s�Sn

|ΔAs|,

hence, EVar (A)Tn < ∞.

(3)⇒(2) is obvious.

(2)⇒(5) Let X admit a decomposition [3.7] with A ∈ Aloc. Then, by the

inequalities [3.8] and [3.9],

{
S((ΔX)2)

}1/2 �
{
S((ΔM)2)

}1/2
+Var (A).

The first term on the right belongs to A +
loc by lemma 2.27, and the second term

does the same by the assumption.

(5)⇒(6) follows from the inequality (ΔX)∗ �
{
S((ΔX)2)

}1/2
. �

COROLLARY 3.8.– The following statements are equivalent:

1) X is a predictable semimartingale;

2) X is a special semimartingale and the local martingale M in its canonical

decomposition is a.s. continuous.

In particular, a continuous semimartingale X is a special semimartingale and we

can take continuous versions of M and A in its canonical decomposition.

PROOF.– Implication (2)⇒(1) is obvious due to corollary 1.2. Let X be a predictable

semimartingale. By lemma 3.2, the process S((ΔX)2) is well defined, and it is

predictable and increasing by lemma 2.19. Then
{
S((ΔX)2)

}1/2
is also a

predictable increasing process. By lemma 2.5,
{
S((ΔX)2)

}1/2 ∈ A +
loc, and it
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follows from theorem 3.6 that X is a special semimartingale. Let X = X0 +M + A
be its canonical decomposition. Then M is a predictable local martingale. Combining

proposition 1.11 and theorem 2.10, we obtain that ΔMT {T<∞} = 0 a.s. for every

predictable stopping time T . By theorem 1.18, the set {ΔM 
= 0} is evanescent.

If X is continuous, then ΔM = −ΔA and, as was proved above, A is a.s.

continuous. So the decomposition

X = X0 +
(
M +

∑
s�·

ΔAs

)
+
(
A−

∑
s�·

ΔAs

)
is a required one. �

The last assertion in corollary 3.8 follows also from the next theorem..

THEOREM 3.7.– Let X be a semimartingale and |ΔX| � a for some a ∈ R+. Then X
is a special semimartingale and, for M and A in its canonical decomposition, |ΔA| �
a and |ΔM | � 2a.

PROOF.– By theorem 3.6, X is a special semimartingale. Let X = X0 +M + A be

its canonical decomposition, and let T be a predictable stopping time. By

proposition 1.11 and theorem 2.10,

ΔAT {T<∞} = E
(
ΔAT {T<∞}

∣∣FT−
)
= E

(
ΔXT {T<∞}

∣∣FT−
)

−E
(
ΔMT {T<∞}

∣∣FT−
)
= E

(
ΔXT {T<∞}

∣∣FT−
)
,

hence |ΔAT {T<∞}| � a a.s. By theorem 1.18, the set |ΔA| > a is evanescent. �

It is clear that the classes S and Sp are stable under stopping and linear

operations. Let us show that they are stable under localization.

THEOREM 3.8.– Let X be an adapted càdlàg process. Assume that there is a localizing

sequence {Tn} of stopping times such that XTn is a semimartingale (respectively

a special semimartingale) for every n. Then X is a semimartingale (respectively a

special semimartingale).

PROOF.– Assume first that all XTn are semimartingales. By the definition, for every

n, there are Mn ∈ Mloc and An ∈ V such that

XTn = X0 +Mn +An.

Define processes M and A as the results of “gluing” from {Tn}, {Mn} and {Tn},

{An}, respectively; then M ∈ Mloc and A ∈ V . It follows from the definition
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of “gluing” that X0 + M + A is a result of “gluing” from {Tn}, {XTn}. Hence,

X0 +MTn +ATn and XTn are indistinguishable for every n, i.e., X0 +M +A and

X are indistinguishable.

The case of special semimartingales may be considered similarly (and even simpler

since we can use the uniqueness of the canonical decomposition). An alternative proof

is to use that X is a semimartingale, as we have just proved. So, it is enough to check

any of statements (4)–(6) in theorem 3.6, which follow from A +
loc = (A +

loc)loc. �

Let X be a semimartingale. Let us take two decompositions X of form [3.7]:

X = X0 +M +A = X0 +M ′ +A′, M,M ′ ∈ Mloc, A,A′ ∈ V . Then M −M ′ =
A′ −A ∈ Mloc ∩V , hence M −M ′ ∈ M d

loc by lemma 2.24, hence (M −M ′)c = 0,

i.e., M c = M ′c. Thus, the process M c, where M is taken from a decomposition [3.7],

is the same (up to an evanescent set) for any choice of a decomposition. This makes

the next definition correct.

DEFINITION 3.6.– A continuous local martingale, denoted by Xc, is called the

continuous martingale component of a semimartingale X if Xc = M c for every M
satisfying [3.7].

The continuous martingale component Xc should not be confused with the

continuous process X −∑
0<s�· ΔXs, which is well defined, e.g., if X ∈ V .

EXERCISE 3.7.– Show that, if X is a continuous semimartingale and Xc = 0, then

X −X0 is indistinguishable with a process with finite variation.

DEFINITION 3.7.– The quadratic variation of a semimartingale X is the increasing

process defined by

[X,X] := 〈Xc, Xc〉+ S
(
(ΔX)2

)
.

The quadratic covariation of semimartingales X and Y is the process with finite

variation defined by

[X,Y ] := 〈Xc, Y c〉+ S(ΔXΔY ).

The correctness of this definition follows from lemma 3.2.

It is clear that, for local martingales, this definition coincides with definition 2.25.

Let us also note that, if M is a local martingale and [M,M ] = 0, then M −M0 = 0,

while, for a semimartingale X , [X,X] = 0 means that X − X0 is indistinguishable

with a continuous process with finite variation.

As in the case of local martingales, [X,Y ] is symmetric and bilinear, [X,Y T ] =
[X,Y ]T for every stopping time T and every X,Y ∈ S . Also, the Kunita–Watanabe

inequalities [2.54] and [2.56] remain true.
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We now turn to the definition of a stochastic integral with respect to

semimartingales. The definition in the general case will be given in section 3.4, and

here we consider the case when an integrand H is a locally bounded predictable

process, which is sufficient to formulate Itô’s formula. In this section, there are

integrals of three different types: the pathwise Lebesgue–Stieltjes integral defined in

theorem 2.11, the stochastic integral with respect to local martingales, see

definition 3.3, and the stochastic integral with respect to semimartingales. But in all

cases and for all types of integrals, we will deal with locally bounded predictable

integrands in this section. Recall that, given a locally bounded predictable H , we

have H ∈ Lvar(X) for every X ∈ V , H ∈ L1
loc(X) for every X ∈ Mloc, and in the

case X ∈ V ∩ Mloc the pathwise Lebesgue–Stieltjes integral H
s· X , and the

stochastic integral with respect to a local martingale H · X coincide

(theorem 3.5 (1)). This is the reason why the integrals of the first and second type are

denoted by the same symbol in this section: H ·X . The same notation will be used in

this section for integrals of the third type, i.e. stochastic integrals with respect to

semimartingales. The reason is that it will follow directly from the definition that for

locally bounded predictable H , the integrals of the first and the third type are the

same if X ∈ V , and the integrals of the second and third types coincide if

X ∈ Mloc.

The idea how to define the stochastic integral with respect to a semimartingale

is simple: we define H · X as H · M + H · A, where M and A are taken from a

decomposition [3.7]. The next lemma shows that this definition does not depend on

the choice of a decomposition. Let us note that H ·M ∈ Mloc and H ·A ∈ V , so that

H ·M +H ·A ∈ S .

LEMMA 3.3.– Let X be a semimartingale and H be a locally bounded predictable

process,

X = X0 +M +A = X0 +M ′ +A′, M,M ′ ∈ Mloc, A,A′ ∈ V .

Then

H ·M +H ·A = H ·M ′ +H ·A′.

PROOF.– Since M −M ′ = A′ −A ∈ Mloc ∩ V ,

H · (M −M ′) = H · (A′ −A)

by theorem 3.5 (1). �

DEFINITION 3.8.– Let X be a semimartingale and H be a locally bounded predictable

process. The stochastic integral of H with respect to X is a semimartingale, denoted

by H ·X , such that, up to an evanescent set,

H ·X = H ·M +H ·A
for every M and A satisfying [3.7].
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In the following propositions, we study the basic properties of the stochastic

integral that has just been defined.

PROPOSITION 3.8.– Let X be a special semimartingale and H be a locally bounded

predictable process. Then H · X is a special semimartingale with the canonical

decomposition:

H ·X = H ·M +H ·A,

where X = X0 +M +A is the canonical decomposition of X .

PROOF.– We have H ·M ∈ Mloc, H · A ∈ V , and the process H · A is predictable

by theorem 2.11. �

PROPOSITION 3.9.– Let X,Y ∈ S , and let H and K be locally bounded predictable

processes, α, β ∈ R. Then:

H · (αX + βY ) = α(H ·X) + β(H · Y ),

(αH + βK) ·X = α(H ·X) + β(K ·X).

PROOF.– The assertion follows from definition 3.8 and the corresponding properties

of the stochastic integral with respect to local martingales (propositions 3.4 and 3.5)

and the Lebesgue–Stieltjes integral (theorem 2.12). �

PROPOSITION 3.10.– Let X be a semimartingale and H be a locally bounded

predictable process. Then (H ·X)c = H ·Xc.

PROOF.– The assertion follows from definitions 3.8 and 3.6 and proposition 3.3. �

PROPOSITION 3.11.– Let X be a semimartingale, H be a locally bounded predictable

process and T be a stopping time. Then

(H ·X)T = H ·XT = (H �0,T �) ·X.

PROOF.– The assertion follows from definition 3.8 and the corresponding properties

of the stochastic integral with respect to local martingales (propositions 3.6) and the

Lebesgue–Stieltjes integral (theorem 2.12). �

PROPOSITION 3.12.– Let X be a semimartingale and H be a locally bounded

predictable process. Then

Δ(H ·X) = HΔX.



Stochastic Integrals 143

PROOF.– The assertion follows from definition 3.8 and the corresponding properties

of the stochastic integral with respect to local martingales (definition 3.3) and the

Lebesgue–Stieltjes integral (theorem 2.12). �

PROPOSITION 3.13.– Let X be a semimartingale and H be a locally bounded

predictable process. Then for every semimartingale Y :

[H ·X,Y ] = H · [X,Y ].

PROPOSITION 3.14.– Let X be a semimartingale, H and K be two locally bounded

predictable processes. Then, K · (H ·X) = (KH) ·X .

EXERCISE 3.8.– Prove propositions 3.13 and 3.14.

THEOREM 3.9.– Let X be a semimartingale and {Hn} a sequence of predictable

processes, which converges as n → ∞ for all t and ω to a process H . Assume also

that |Hn| � K for all n, where K is a locally bounded predictable process. Then

sups�t |Hn ·Xs −H ·Xs| P−→ 0 as n → ∞ for every t ∈ R+.

PROOF.– It is enough to consider two cases separately: X = M ∈ Mloc and X =
A ∈ V . In the second case, the proof is simple: for almost all ω,

sup
s�t

|Hn ·As −H ·As| �
∫ t

0

|Hn
s −Hs| dVar (A)s → 0

by the Lebesgue dominated convergence theorem, because a trajectory K·(ω) is

bounded on ]0, t] for almost all ω (by a constant depending on ω).

Let now M ∈ Mloc be given. We take a localizing sequence {Tn} such that

E[M,M ]
1/2
Tn

< ∞ and |K| �0,Tn� � Cn < ∞. By Davis’ inequality and

theorem 3.4,

E sup
s�Tn

|Hn ·Ms −H ·Ms| � CE[(Hn −H) ·M, (Hn −H) ·M ]
1/2
Tn

= CE
(
(Hn −H)2 · [M,M ]Tn

)1/2
.

Applying twice the dominated convergence theorem, we first obtain (Hn −H)2 ·
[M,M ]Tn → 0 a.s., and, second, that the right-hand side of the previous formula

tends to 0. In particular,

sup
s�Tn

|Hn ·Ms −H ·Ms| P−→ 0.
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It remains to note that:

P
(
sup
s�t

|Hn ·Ms −H ·Ms| > ε
)

� P
(
sup
s�Tn

|Hn ·Ms −H ·Ms| > ε
)
+ P(Tn < t). �

We now turn to the most fundamental result of stochastic calculus, Itô’s formula,

which is given without the proof. We say that a process X = (X1, . . . , Xd) with

values in Rd is a d-dimensional semimartingale if all components X1, . . . , Xd are

semimartingales.

THEOREM 3.10 (Itô’s formula).– Let X = (X1, . . . , Xd) be a d-dimensional

semimartingale, and let F be a twice continuously differentiable function from Rd to

R. Then F (X) is a semimartingale and

F (X) = F (X0) +

d∑
i=1

∂F

∂xi
(X−) ·Xi +

1

2

d∑
i,j=1

∂2F

∂xi∂xj
(X−) · 〈(Xi)c, (Xj)c〉

+ S

(
F (X)− F (X−)−

d∑
i=1

∂F

∂xi
(X−)ΔXi

)
.

Let us discuss the contents of Itô’s formula in detail. Equality of the left and right

sides is understood, of course, up to an evanescent set. On the left side, we have a

real-valued adapted process F (X). Since F is continuous, its paths are càdlàg. On

the right side, we have the sum of four terms. The first term is simply the value of

the process F (X) at time 0. Further, for each i, Y i := ∂F
∂xi

(X) is an adapted càdlàg

process (for the same reasons as before). Therefore, Y i
− = ∂F

∂xi
(X−) is a predictable

locally bounded (and left-continuous) process, which is integrated with respect to the

semimartingale Xi in the second term. In particular, by proposition 3.8, the second

term on the right is a special semimartingale if these are all Xi. Similarly, ∂2F
∂xi∂xj

(X−)
is a predictable locally bounded (and left-continuous) process, which is integrated with

respect to the continuous process with finite variation 〈(Xi)c, (Xj)c〉. Therefore, the

third term is a continuous process with finite variation. Let us also note that here we

deal with the Lebesgue–Stieltjes integral, and the predictability of the integrand does

not play any role; in particular, the process X− in the integrand can be replaced by

X without changing the value of the integral because we integrate with respect to a

continuous process. It remains to analyze the fourth term on the right. First, we show

that it is well defined. Let t ∈ R+. Consider the trajectory X·(ω) on the interval [0, t]
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for every ω. Since it is càdlàg, it does not come out of some compact K = K(ω, t).
Denote:

C(ω, t) := sup
x∈K(ω,t)

sup
i,j

∣∣∣ ∂2F

∂xi∂xj
(x)

∣∣∣.
It follows from Taylor’s formula for functions of several variables that, for s � t,

∣∣∣F (Xs(ω))− F (Xs−(ω))−
d∑

i=1

∂F

∂xi
(Xs−(ω))ΔXi

s(ω)
∣∣∣

� C(ω, t)

2

d∑
i,j=1

|ΔXi
s(ω)||ΔXj

s (ω)| �
C(ω, t)d

2

d∑
i=1

(ΔXi
s(ω))

2.

Therefore, by lemma 3.2, the fourth term is well defined and is a process with

finite variation. Note that its jumps are exactly the same as you need in order to jumps

in the left and right sides of Itô’s formula match.

Since the right side of Itô’s formula is a semimartingale, the left side is a

semimartingale, too, as the theorem asserts. Thus, the class of semimartingales is

closed with respect to a wide class of transformations. Note also that if all Xi are

special semimartingales, then F (X) is a special semimartingale if and only if the

fourth term on the right is.

It often happens that there is a need to apply Itô’s formula for the function F which

is twice continuously differentiable (and perhaps even defined) only on an open subset

of Rd, while the process X takes values in this subset and, maybe, in its boundary.

We show how this can be done in a special case. Let dimension d = 1, so that X ∈
S and takes nonnegative values, X0 > 0, and the function F is defined and twice

continuously differentiable on (0,∞). For each natural n, denote by Fn some function

with values in R, which is defined and twice continuously differentiable on R and

coincides with F on [1/n,∞[. We also put Tn := inf {t : Xt < 1/n}. Applying Itô’s

formula to Fn and X , we obtain

Fn(X) = Fn(X0) + F ′
n(X−) ·X +

1

2
F ′′
n (X−) · 〈Xc, Xc〉

+S
(
Fn(X)− Fn(X−)− F ′

n(X−)ΔX
)
.
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Let us now stop the processes in both sides of this formula at Tn, and use

proposition 3.11:

Fn(X)Tn = Fn(X0)+
{
F ′
n(X−) �0,Tn�

} ·X +
1

2

{
F ′′
n (X−) �0,Tn�

} · 〈Xc, Xc〉

+S
({

Fn(X)− Fn(X−)− F ′
n(X−)ΔX

}
�0,Tn�

)
.

Note that X � 1/n on �0, Tn� and X− � 1/n on �0, Tn�, hence,

Fn(X−) �0,Tn� = F (X−) �0,Tn�, F ′
n(X−) �0,Tn� = F ′(X−) �0,Tn�,

F ′′
n (X−) �0,Tn� = F ′′(X−) �0,Tn�, and we can rewrite the formula as

Fn(X)Tn = Fn(X0)+
{
F ′(X−) �0,Tn�

} ·X +
1

2

{
F ′′(X−) �0,Tn�

} · 〈Xc, Xc〉

+S
({

Fn(X)− F (X−)− F ′(X−)ΔX
}

�0,Tn�

)
.

Moreover, assume now that either X > 0 everywhere or F is defined at 0 (the

right-continuity of F at 0 is not required here). Then:

F (X)Tn = F (X0)+
{
F ′(X−) �0,Tn�

} ·X +
1

2

{
F ′′(X−) �0,Tn�

} · 〈Xc, Xc〉

+S
({

F (X)− F (X−)− F ′(X−)ΔX
}

�0,Tn�

)
, [3.10]

which can be easily seen comparing this formula with the previous formula.

If X > 0 and X− > 0 everywhere, then Tn → ∞, processes F ′(X−) and

F ′′(X−) are locally founded, and we arrive at Itô’s formula in the standard form:

F (X) = F (X0) + F ′(X−) ·X +
1

2
F ′′(X−) · 〈Xc, Xc〉

+S
(
F (X)− F (X−)− F ′(X−)ΔX

)
. [3.11]

If we impose only additional assumptions made before [3.10], then we can say, by

abuse of language, that Itô’s formula [3.11] holds on the set
⋃

n�0, Tn�. Essentially,

this means that [3.10] holds for every n.

EXERCISE 3.9.– Show that the process Mn in example 2.2 is a local martingale.

Itô’s formula can be also generalized in some other directions. For example,

Tanaka–Meyer formula is a generalization of Itô’s formula for convex F : R → R.
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Itô’s formula can be derived from its special case, the formula of integration by

parts [3.12]. We also deduce two versions of the formula of integration by parts, [3.13]

and [3.14], which are valid under additional assumptions.

THEOREM 3.11 (integration by parts).– Let X and Y be semimartingales. Then XY
is a semimartingale and

XY = X0Y0 + Y− ·X +X− · Y + [X,Y ]. [3.12]

If Y ∈ V , then [X,Y ] = (ΔX)
s· Y and

XY = Y− ·X +X
s· Y. [3.13]

If Y ∈ V is predictable, then [X,Y ] = (ΔY ) ·X and

XY = Y ·X +X− · Y. [3.14]

PROOF.– Applying Itô’s formula with F (x, y) = xy, we obtain that XY is a

semimartingale and

XY = X0Y0 + Y− ·X +X− · Y + 〈Xc, Y c〉
+S(XY −X−Y− − Y−ΔX −X−ΔY )

= X0Y0 + Y− ·X +X− · Y + 〈Xc, Y c〉+ S(ΔXΔY ),

i.e. [3.12] holds.

If Y ∈ V , then Y c = 0, hence,

[X,Y ] = S(ΔXΔY ) = (ΔX)
s· Y.

Now let Y ∈ V be predictable. Note that, in this case, the process Var (Y ) is

locally bounded, see the proof of lemma 2.5. Thus, Y is locally bounded and the

integrals (ΔY ) ·X and Y ·X are well defined.

Consider the semimartingale Z = [X,Y ]− (ΔY ) ·X . It is clear that Z0 = 0 and

Z is continuous. By corollary 3.8, Z is a special semimartingale, and the processes

M ∈ Mloc and A ∈ V in its canonical decomposition Z = M + A are continuous.

Further,

M = Zc = [X,Y ]c − (
(ΔY ) ·X)c

= −(ΔY ) ·Xc,
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hence

〈M,M〉 = (ΔY )2 · 〈Xc, Xc〉 = 0,

because 〈Xc, Xc〉 is continuous, the integrand (ΔY )2, for every ω, does not equal

to zero in at most countable set, and we deal with the pathwise Lebesgue–Stieltjes

integral. Hence, M = 0 and Z is a continuous process with finite variation.

Put H := {ΔY=0}. Then H is a bounded predictable process and the sets

{t: ΔHt(ω) 
= 1} are at most countable (for every ω). Therefore, the

Lebesgue–Stieltjes integral H · Z is indistinguishable with Z. However, Y c = 0,

hence [X,Y ] = S(ΔXΔY ) and

H · [X,Y ] = S(HΔXΔY ) = 0.

By proposition 3.14,

H · ((ΔY ) ·X) = (HΔY ) ·X = 0.

Thus, Z = 0. �

COROLLARY 3.9.– If M ∈ Mloc, A ∈ V , and A is predictable, then A ·M ∈ Mloc

and

AM = A ·M +M− ·A

is the canonical decomposition of the special semimartingale AM .

EXERCISE 3.10.– Deduce Itô’s formula for an arbitrary polynomial F (x1, . . . , xn)
from the formula [3.12] of integration by parts.

3.3. Stochastic exponential

Let us consider the equation:

Z = 1 + Z− ·X [3.15]

with a given semimartingale X and an unknown process Z, which is assumed to

belong to the class of adapted càdlàg processes (which guarantees that the stochastic

integral is well defined). Equation [3.15] is usually written in the symbolic form

dZ = Z− dX, Z0 = 1,
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and is said to be a stochastic differential equation, though, essentially, [3.15] is a

stochastic integral equation. Similarly to the ordinary differential equation dz/dx =
z, its solution is called the stochastic exponential (or Doléans exponential) of the

semimartingale X .

Before we state and prove the main result of this section, we recall how the infinite

product is defined. If p1, p2,. . . , pn,. . . is a sequence of real numbers, then the symbol

p1 · p2 · · · · · pn · · · · =
∞∏

n=1

pn

is called an infinite product. If there exists

lim
n→∞

n∏
k=1

pk,

then this limit is called the value of the infinite product. Moreover, if the limit is finite

and is different from 0, then we say that the infinite product converges. It is necessary

for the convergence of the infinite product that pn 
= 0 for all n and limn pn = 1.

Since discarding a finite number of (nonzero) terms in the product does not affect

the convergence, it is sufficient to consider the question of the convergence of infinite

products when all pn > 0. Under this condition, the infinite product converges if and

only if the infinite series
∑∞

n=1 log pn converges, and then

∞∏
n=1

pn = exp
( ∞∑
n=1

log pn

)
.

If, moreover, the series
∑∞

n=1 log pn converges absolutely, then we say that the

product
∏∞

n=1 pn converges absolutely. If a product converges absolutely, then all its

rearrangements converge and to the same limit.

It is more convenient for us to change this terminology and to use the following

definition: an infinite product
∏∞

n=1 pn is called convergent absolutely if pn � 0
only for a finite number of n and the product

∏
n : pn>0 pn converges absolutely in the

previous sense. It is clear that this definition guarantees that the value of the product∏∞
n=1 pn is defined and finite and does not change under any rearrangement of factors.

However, it may be equal to 0, which happens if and only if one of factors is 0.

LEMMA 3.4.– Let X be a semimartingale. Then, for almost all ω, the infinite product∏
s�t

(1 + ΔXs)e
−ΔXs
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converges absolutely for all t ∈ R+. There exists a process V such that V0 = 1,
V − 1 ∈ V d, and, for every t ∈ R+,

Vt =
∏
s�t

(1 + ΔXs)e
−ΔXs a.s. [3.16]

If the set {ΔX = −1} is evanescent, there is a version of V which does not

vanish. If ΔX � −1, then we can choose a version of V, whose all trajectories are

nonincreasing.

PROOF.– Since the set {s � t : |ΔXs(ω)| > 1/2} is finite for all ω and t ∈ R, the

process

V ′
t =

∏
s�t

(1 + ΔXs {|ΔXs|>1/2})e−ΔXs {|ΔXs|>1/2}

is well defined and adapted, V ′
0 = 1, with all trajectories being piecewise constant

(with a finite number of pieces on compact intervals) and right-continuous. Hence,

V ′ − 1 ∈ V d. For a given t, the absolute convergence of the product∏
s�t : |ΔXs|�1/2

(1 + ΔXs)e
−ΔXs

is equivalent to the absolute convergence of the series∑
s�t : |ΔXs|�1/2

{
log (1 + ΔXs)−ΔXs

}
,

which holds, in view of the inequality −x2 � log (1+ x)− x � 0, −1/2 � x � 1/2,

for ω such that the series
∑

s�t(ΔXs)
2 converges, i.e. for almost all ω by lemma 3.2.

Therefore, we can define the process

B := S
{
log (1 + ΔXs {|ΔXs(ω)|�1/2})−ΔXs {|ΔXs(ω)|�1/2}

} ∈ V d;

moreover, we can assume that −B ∈ V +. Now put

V = V ′eB .

It is clear that [3.16] holds. Note that, by Itô’s formula,

eB − 1 = eB− ·B + S(eB − eB− − eB−ΔB) = S(eB − eB−) ∈ V d,
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where we have used that eB− · B = S(eB−ΔB) due to B ∈ V d. Similarly, applying

the formula of integration by parts, we get V ′eB − 1 ∈ V d. The last two assertions

are clear from the construction. �

Also, we prove the uniqueness of a solution for a deterministic equation.

LEMMA 3.5.– Let a function f : R+ → R be right-continuous everywhere on R+,
f(0) = 0, and varf (t) finite for all t ∈ R+, z0 ∈ R. In the class of càdlàg functions

z : R+ → R, the equation

z(t) = z0 +

t∫
0

z(s−) df(s), t ∈ R+,

has no more than one solution.

PROOF.– Let z be the difference of two solutions. Then

z(t) =

t∫
0

z(s−) df(s), t ∈ R+.

Put g(t) := varf (t). Note that, by Itô’s formula,

g(t)n =n

t∫
0

g(s−)n−1dg(s)+
∑
s�t

(
g(s)n − g(s−)n − ng(s−)n−1(g(s)− g(s−))

)
,

the summands being nonnegative. Due to this and putting K := sups�t |z(s)|, we

obtain, consecutively, for r ∈ [0, t],

|z(r)| �
r∫

0

|z(s−)| dg(s) � Kg(r),

|z(r)| �
r∫

0

|z(s−)| dg(s) � K

r∫
0

g(s−) dg(s) � Kg(r)2/2,

|z(r)| �
r∫

0

|z(s−)| dg(s) � K

2

r∫
0

g(s−)2 dg(s) � Kg(r)3/6.

Continuing, we get |z(r)| � Kg(r)n/n!. Since g(r)n/n! → 0 as n → ∞, the

claim follows. �
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THEOREM 3.12.– Let X be a semimartingale. The equation [3.15] has a unique (up

to an evanescent set) solution in the class of adapted càdlàg processes. This solution

is a semimartingale, denoted by E (X), is given by:

E (X) = exp
(
X −X0 − 1

2
〈Xc, Xc〉

)
V, [3.17]

where V is defined in lemma 3.4.

PROOF.– Put Y = X − X0 − 1
2 〈Xc, Xc〉, F (y, v) = eyv, Z := F (Y, V ). By Itô’s

formula, Z is a semimartingale. Since V c = 0 and Z0 = 1, we have

Z = 1 + Z− · Y + eY− · V +
1

2
Z− · 〈Y c, Y c〉+ S

(
Z − Z− − Z−ΔY − eY−ΔV

)
.

Since Y c = Xc, the sum of the first integral (Z− · Y ) and the third integral

( 12Z− · 〈Y c, Y c〉) is Z− · X . Further, since V ∈ V d, the second integral eY− · V is

S(eY−ΔV ), so that it can be canceled with the corresponding term in the last sum.

Finally, using [3.16], we get

Z = eY V = eY−+ΔY V−(1 + ΔX)e−ΔX

= Z−eΔY (1 + ΔX)e−ΔX = Z−(1 + ΔX),

where Z − Z− − Z−ΔY = 0. Resuming, we obtain Z = 1 + Z− · X , i.e. Z
satisfies [3.15].

Assume now that an adapted càdlàg process Z̃ is a solution to equation [3.15].

Then Z̃ is a semimartingale. Put Ṽ = e−Y Z̃ = F (−Y, Z̃), where Y and F are the

same as before. Since Z̃0 = 1, by Itô’s formula,

Ṽ = 1− Ṽ− · Y + e−Y− · Z̃ +
1

2
Ṽ− · 〈Y c, Y c〉 − e−Y− · 〈Y c, Z̃c〉

+S
(
Ṽ − Ṽ− + Ṽ−ΔY − e−Y−ΔZ̃

)
.

Using propositions 3.14, 3.10 and 3.12, we obtain

e−Y− · Z̃ = (e−Y−Z̃−) ·X = Ṽ− ·X,

e−Y− · 〈Y c, Z̃c〉= e−Y− · 〈Xc, Z̃− ·Xc〉=(e−Y−Z̃−) · 〈Xc, Xc〉= Ṽ− · 〈Xc, Xc〉,

e−Y−ΔZ̃ = e−Y−Z̃−ΔX = Ṽ−ΔX.
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We conclude that

Ṽ − 1 = S(ΔṼ ),

i.e. Ṽ − 1 ∈ V d (more precisely, there is a version of Ṽ having this property). Next,

Ṽ = e−Y Z̃ = e−Y−e−ΔX Z̃−(1 + ΔX) = Ṽ−e−ΔX(1 + ΔX). Let us define the

process

A := S
(
e−ΔX(1 + ΔX)− 1

)
.

Since e−x(1 + x) − 1 ∼ x2 as x → 0, it is easy to see that this process is well

defined and, hence, belongs to V d. So we have

Ṽ − 1 = Ṽ− ·A,

because the processes on the left and on the right belong to V d and their jumps

coincide. It follows from lemma 3.5 that Ṽ is determined uniquely (up to an

evanescent set). Therefore, Z̃ = eY Ṽ is determined uniquely. �

The following properties of the stochastic exponential follow from the definition,

i.e. from equation [3.15].

PROPOSITION 3.15.– Let X ∈ Mloc (respectively X ∈ V , respectively X ∈ Sp,
respectively X be predictable). Then, E (X) ∈ Mloc (respectively E (X) − 1 ∈ V ,
respectively X ∈ Sp, respectively E (X) is predictable).

PROPOSITION 3.16.– Let X be a semimartingale, ξ a F0-measurable random

variable. The equation

Z = ξ + Z− ·X

has a unique (up to an evanescent set) solution in the class of adapted càdlàg processes.

This solution is the semimartingale ξE (X).

EXERCISE 3.11.– Prove proposition 3.16.

HINT.– To prove the uniqueness, consider the difference of two solutions.

The following two propositions follow from lemma 3.4 and [3.17]. All relations

between processes are understood up to an evanescent set.

PROPOSITION 3.17.– Let X be a semimartingale and ΔX > −1. Then E (X) > 0
and E (X)− > 0.
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PROPOSITION 3.18.– Let X be a semimartingale, T := inf {t : ΔXt = −1}. Then

E (X) 
= 0 on the interval �0, T �, and E (X)− 
= 0 on the interval �0, T �, and E (X) =
0 on �T,∞�.

Unlike the usual exponential function, the stochastic exponential of a sum, in

general, is not the product of the stochastic exponentials. However, the following

statement holds.

THEOREM 3.13 (Yor’s formula).– Let X and Y be semimartingales. Then

E (X)E (Y ) = E (X + Y + [X,Y ]).

PROOF.– By the formula [3.12] of integration by parts and proposition 3.14, we get

E (X)E (Y ) = 1 + E (Y )− · E (X) + E (X)− · E (Y ) + [E (X),E (Y )]

= 1 +
(
E (X)−E (Y )−

) ·X +
(
E (X)−E (Y )−

) · Y
+
(
E (X)−E (Y )−

) · [X,Y ]

= 1 +
(
E (X)−E (Y )−

) · (X + Y + [X,Y ]). �

It is often useful to represent a given process Z in the form Z0E (X), i.e. to

express it as the stochastic exponential of another process (usually, if Z is

nonnegative or strictly positive). Proposition 3.18 says that this is possible not for

every semimartingale Z. We consider only the case where neither Z nor Z− vanish.

THEOREM 3.14.– Let Z be a semimartingale such that the processes Z and Z− do not

vanish. Then there exists the process:

X =
1

Z−
· Z, [3.18]

denoted by Log Z which is called the stochastic logarithm of Z, and X is a unique

semimartingale such that

Z = Z0E (X) and X0 = 0.

Moreover, ΔX 
= −1 and

Log Z = log
∣∣∣ Z
Z0

∣∣∣+ 1

2Z2−
· 〈Zc, Zc〉 − S

(
log

∣∣∣1 + ΔZ

Z−

∣∣∣− ΔZ

Z−

)
. [3.19]
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PROOF.– Put Tn := inf {t : |Zt| < 1/n}. Since Z and Z− do not vanish, we have

Tn ↑ ∞. Since |Z−| � 1/n on �0, Tn�, the process 1/Z− is locally bounded and

the process X in [3.18] is well defined. Moreover, ΔX = ΔZ/Z− 
= −1. Using

proposition 3.14, we get

Z− ·X = Z − Z0,

i.e. Z = Z0E (X) due to proposition 3.16. If X is another semimartingale satisfying

this relation and X0 = 0, then Z = Z0+Z− ·X , and it follows from proposition 3.14

that

1

Z−
· Z =

(
Z−

1

Z−

)
·X = X.

In order to prove [3.19], we can use Itô’s formula with a twice continuously

differentiable function Fn such that Fn(x) = log |x| on the set {x ∈ R : |x| � 1/n}.

Using the arguments preceding [3.10], we can prove [3.19] on the stochastic interval

�0, Tn� for every n. �

EXERCISE 3.12.– Give a full proof of [3.19].

3.4. Stochastic integrals with respect to semimartingales: the general case

In this section, we will study stochastic integrals with respect to semimartingales

in the general case. That is, integrands are predictable but not locally bounded as in

section 3.2. In order to avoid any misunderstandings and for clarity, we will denote

the pathwise Lebesgue–Stieltjes integral defined in theorem 2.11 by H
s· X and the

stochastic integral with respect to local martingales, see definition 3.3, by H
m· X; the

symbol H ·X is reserved for stochastic integrals with respect to semimartingales.

The idea how to define the integral is the same: to take a decomposition [3.7] and

to define H · X as H
m· M + H

s· A, Of course, we should assume that

H ∈ L1
loc(M) ∩ Lvar(A). The main difficulty of this approach is that the class

L1
loc(M) ∩ Lvar(A) depends on the choice of M and A in [3.7]. Indeed, if X is a

semimartingale from Mloc ∩ V , we may consider [3.7] with M = X and A = 0 (the

canonical decomposition) or, conversely, M = 0 and A = X . In the first case,

L1
loc(M) ∩ Lvar(A) = L1

loc(X), and, in the second case,

L1
loc(M) ∩ Lvar(A) = Lvar(X). However, we know from examples 2.3 and 3.2 that

any of these classes does not contain another one, in general. The first of these

examples also shows that if X ∈ Sp, then the class L1
loc(M) ∩ Lvar(A) with

arbitrary M and A satisfying [3.7] may contain elements which are not in the class

with M and A from the canonical decomposition.
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DEFINITION 3.9.– Let X be a semimartingale. A predictable process H is called X-

integrable, if there is a decomposition X = X0 +M + A, M ∈ Mloc, A ∈ V , such

that H ∈ L1
loc(M)∩Lvar(A). In this case, the stochastic integral H ·X is defined by

H ·X := H
m· M +H

s· A.

The class of all X-integrable processes is denoted by L(X).

It is clear that, if X ∈ S and H ∈ L(X), then H · X is a semimartingale and

H ·X0 = 0.

Obviously, any locally bounded predictable process X belongs to L(X) for every

X , and definition 3.8 is a special case of definition 3.9.

PROPOSITION 3.19.– Definition 3.9 of the stochastic integral is correct.

PROOF.– Let X = X0 +M +A = X0 +M ′ +A′ with M,M ′ ∈ Mloc, A,A′ ∈ V ,

H ∈ L1
loc(M)∩L1

loc(M
′)∩Lvar(A)∩Lvar(A

′). Then M−M ′ = A′−A ∈ Mloc∩V ,

H ∈ L1
loc(M −M ′) ∩ Lvar(A

′ −A), and by theorem 3.5 (1),

H
m· (M −M ′) = H

s· (A′ −A).

Therefore,

H
m· M +H

s· A = H
m· M ′ +H

s· A′. �

The next proposition follows trivially from definition 3.9 and proposition 3.19. It

shows that definition 3.9 of the stochastic integral with respect to semimartingales

includes the definition of the pathwise Lebesgue–Stieltjes integral from theorem 2.11

and the definition of the stochastic integral with respect to local martingales, see

definition 3.3, as special cases.

PROPOSITION 3.20.–

1) Let X ∈ V . Then Lvar(X) ⊆ L(X) and

H
s· X = H ·X for every H ∈ Lvar(X).

2) Let X ∈ Mloc. Then L1
loc(X) ⊆ L(X) and

H
m· X = H ·X for every H ∈ L1

loc(X).

In view of this proposition, there is no need to use symbols
s· and

m· .
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Now we state properties of the integral introduced in definition 3.9 which follow

easily from the definition and from corresponding properties of the stochastic integral

with respect to local martingales and the pathwise Lebesgue–Stieltjes integral.

PROPOSITION 3.21.– Let X,Y ∈ S , H ∈ L(X) ∩ L(Y ), α, β ∈ R. Then, H ∈
L(αX + βY ) and

H · (αX + βY ) = α(H ·X) + β(H · Y ).

PROPOSITION 3.22.– Let X be a semimartingale and H ∈ L(X). Then,

H ∈ L1
loc(X

c) and (H ·X)c = H ·Xc.

PROPOSITION 3.23.– Let X be a semimartingale, H ∈ L(X), and let T be a stopping

time. Then, H ∈ L(XT ), H �0,T � ∈ L(X) and

(H ·X)T = H ·XT = (H �0,T �) ·X.

PROPOSITION 3.24.– Let X be a semimartingale and H ∈ L(X). Then

Δ(H ·X) = HΔX.

PROPOSITION 3.25.– Let X be a semimartingale and H ∈ L(X). Then, for every

semimartingale Y, we have H ∈ Lvar([X,Y ]) and

[H ·X,Y ] = H · [X,Y ].

EXERCISE 3.13.– Prove propositions 3.21–3.25.

As regards the linearity of H ·X in H and the “associative” property K ·(H ·X) =
(KH) ·X , some preparation is needed.

We have already observed that, for a special semimartingale X with the canonical

decomposition X = X0+M +A, the class L1
loc(M)∩Lvar(A) may be more narrow

than L(X) as in example 2.3. The following important theorem characterizes this

situation and generalizes statement (3) in theorem 3.5.

THEOREM 3.15.– Let X be a special semimartingale with the canonical

decomposition X = X0 + M + A and H ∈ L(X). A necessary and sufficient

condition for H ·X to be a special semimartingale is that H ∈ L1
loc(M) ∩ Lvar(A).

Note that if X is a predictable semimartingale and H ∈ L(X), then H ·X is also

predictable by proposition 3.24. By corollary 3.8, X and H · X are special

semimartingales. Therefore, it holds
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COROLLARY 3.10.–

1) Let X be a predictable semimartingale with the canonical decomposition X =
X0 +M +A. Then, L(X) = L1

loc(M) ∩ Lvar(A).

2) Let M be a continuous local martingale. Then, L(M) = L1
loc(M).

3) Let A be a predictable process with finite variation. Then, L(A) = Lvar(A).

Before we turn to the proof of theorem 3.15, we state and prove an intermediate

version of the “associative” property with a locally bounded K.

LEMMA 3.6.– Let X be a semimartingale, H ∈ L(X), K a locally bounded

predictable process. Then KH ∈ L(X) and K · (H ·X) = (KH) ·X .

PROOF.– Let a decomposition X = X0 +M + A, M ∈ Mloc, A ∈ V , be such that

H ∈ L1
loc(M) ∩ Lvar(A). Note that H ·M ∈ Mloc and K ∈ L1

loc(H ·M) because

K is locally bounded. Hence, by proposition 3.7,

KH ∈ L1
loc(M) and K · (H ·M) = (KH) ·M.

Similarly, by theorem 2.12,

KH ∈ Lvar(A) and K · (H ·A) = (KH) ·A.

Therefore, KH ∈ L(X) and

(KH) ·X = (KH) ·M + (KH) ·A
= K · (H ·M) +K · (H ·A) = K · (H ·X). �

PROOF OF THEOREM 3.15.– The sufficiency is obvious. Indeed, H ·M ∈ Mloc for

H ∈ L1
loc(M) by definition 3.3 and the process H ·A belongs to V and is predictable

for H ∈ Lvar(A) by theorem 2.12.

Let us prove the necessity. Let H · X be a special semimartingale. Write its

canonical decomposition as

H ·X = N +B,

where N ∈ Mloc, B ∈ V , and B is predictable. Put

K :=
1

1 + |H| , J :=
1

K
.
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It is obvious that K and J are strictly positive predictable processes, K and KH
are bounded.

By proposition 3.8, (KH) ·X and K · (H ·X) are special semimartingales with

the canonical decompositions

(KH) ·X = (KH) ·M + (KH) ·A,

K · (H ·X) = K ·N +K ·B.

However, by lemma 3.6, (KH) · X = K · (H · X). Since the canonical

decomposition is unique, we have:

(KH) ·M = K ·N, (KH) ·A = K ·B. [3.20]

Since JK = 1, we have JK ∈ L1
loc(N). By proposition 3.7, we get J ∈ L1

loc(K ·
N). Taking into account the first equality in [3.20], we have J ∈ L1

loc((KH) · M).
Applying proposition 3.7 once again, we obtain H = JKH ∈ L1

loc(M).

Similarly, J ∈ Lvar(K · B), hence the second equality in [3.20] implies J ∈
Lvar((KH) ·A), from which H = JKH ∈ Lvar(A) follows. �

COROLLARY 3.11.– Let M ∈ Mloc and H ∈ L(M). A necessary and sufficient

condition for H ·M to be a local martingale is that H ∈ L1
loc(M).

PROOF.– The sufficiency follows from definition 3.3, and the necessity comes from

theorem 3.15. �

In the case where X is a predictable process with finite variation, the assertion of

theorem 3.15 reduces to corollary 3.10 (3). But we can prove the following interesting

result for processes with finite variation that are not necessarily predictable, which

generalizes statement (2) in theorem 3.5.

THEOREM 3.16.– Let A ∈ V and H ∈ L(A). It is necessary and sufficient for H ·A ∈
V that H ∈ Lvar(A).

PROOF.– Again, it is enough to check the necessity. Let A ∈ V , H ∈ L(A) and

H · A ∈ V . It follows from the assumption H ∈ L(A) that there is a decomposition

A = M +B such that M ∈ Mloc, B ∈ V and H ∈ L1
loc(M) ∩ Lvar(B). Then,

H ·A = H ·M +H ·B.

Hence, M = A−B ∈ V and H ·M = H ·A−H ·B ∈ V . By theorem 3.5 (2),

H ∈ Lvar(M), and we obtain H ∈ Lvar(M +B) = Lvar(A). �
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Let us call a set D ⊂ Ω×R+ discrete if, for almost all ω, the set {s ∈ R+ : (ω, s) ∈
D, s � t} is finite for all t ∈ R+. If X is a càdlàg process, then, for every a > 0, the

set {|ΔX| > a} is discrete.

Let X be an adapted càdlàg process and D an optional discrete set. Then the

process S(ΔX D) ∈ V is well defined. Put XD := X − S(ΔX D). Since

ΔXD = (Ω×R+)\DΔX , by theorem 3.7, if X is a semimartingale, then XD is a

special semimartingale provided

D ⊇ {|ΔX| > 1}.
LEMMA 3.7.– Let X be a semimartingale and H ∈ L(X).

1) The set

D0 := {|ΔX| > 1} ∪ {|HΔX| > 1}

is an optional discrete set.

2) Let D be an optional discrete set containing D0, X
D = X0 + M + B

the canonical decomposition of the special semimartingale XD. Put A := B +
S(ΔX D). Then, H ∈ L1

loc(M) ∩ Lvar(A). Moreover, (H · X)D is a special

semimartingale, and H ·M is the local martingale in its canonical decomposition.

Thus, the lemma allows us to construct explicitly a decomposition X = X0 +
M + A, M ∈ Mloc, A ∈ V , such that H ∈ L1

loc(M) ∩ Lvar(A) (assuming that

H ∈ L(X)).

PROOF.– Put Y := H ·X .

1) By proposition 3.24, {|HΔX| > 1} = {|ΔY | > 1} up to an evanescent set.

The claim follows.

2) Since the set D is discrete and ΔY = HΔX , it is evident that H ∈
Lvar

(
S(ΔX D)

)
and H · S(ΔX D) = S(ΔY D). Therefore, by proposition 3.21,

H ∈ L(XD) and H · XD = Y D. Since D ⊇ D0, XD and Y D are special

semimartingales. Theorem 3.15 allows us to conclude that H ∈ L1
loc(M) ∩ Lvar(B).

Moreover, Y D = H · M + H · B is the canonical decomposition of Y D. That

H ∈ Lvar(A) follows from the definition of A. �

Now we are in a position to prove the remaining properties of the stochastic

integral.
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PROPOSITION 3.26.– Let X be a semimartingale, H,K ∈ L(X), α, β ∈ R. Then

αH + βK ∈ L(X) and

(αH + βK) ·X = α(H ·X) + β(K ·X).

PROOF.– Applying lemma 3.7 with

D := {|ΔX| > 1} ∪ {|HΔX| > 1} ∪ {|KΔX| > 1},

we get a decomposition X = X0 +M + A, M ∈ Mloc, A ∈ V , such that H,K ∈
L1
loc(M) ∩ Lvar(A). Now, using the linearity of stochastic integrals with respect to

local martingales and Lebesgue–Stieltjes integrals, we obtain

αH + βK ∈ L1
loc(M) ∩ Lvar(A),

(αH + βK) ·M = α(H ·M) + β(K ·M),

(αH + βK) ·A = α(H ·A) + β(K ·A).

The claim follows. �

PROPOSITION 3.27.– Let X be a semimartingale, H ∈ L(X), and let K be a

predictable process. Then

K ∈ L(H ·X) ⇔ KH ∈ L(X),

and, in this case,

K · (H ·X) = (KH) ·X.

PROOF.– Assume that K ∈ L(H ·X). Denote Y := H ·X , Z := K · Y , and put

D := {|ΔX| > 1} ∪ {|HΔX| > 1} ∪ {|KHΔX| > 1}.

Since {|HΔX| > 1} = {|ΔY | > 1} and {|KHΔX| > 1} = {|KΔY |
> 1} = {|ΔZ|> 1} (up to an evanescent set), D is an optional discrete set.

Therefore. we can apply lemma 3.7 to the pairs (X,H) and (Y,K) with this set D
and to get decompositions X = X0 + M + A and Y = N + B, M,N ∈ Mloc,

A,B ∈ V , for which H ∈ L1
loc(M) ∩ Lvar(A), K ∈ L1

loc(N) ∩ Lvar(B). Moreover,

by lemma 3.7, M is the local martingale in the canonical decomposition of the

special semimartingale XD, N is the local martingale in the canonical

decomposition of the special semimartingale Y D, and N = H · M . Hence,
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B = H · A. It follows from the associative properties of stochastic integrals with

respect to local martingales and Lebesgue–Stieltjes integrals that

KH ∈ L1
loc(M) ∩ Lvar(A),

K ·N = K · (H ·M) = (KH) ·M,

K ·B = K · (H ·A) = (KH) ·A.

This implies KH ∈ L(X) and K · (H ·X) = (KH) ·X .

Assume that KH ∈ L(X). Under this assumption, the set D introduced above is

also discrete. Thus, by lemma 3.7, if X = X0 +M + A is the same decomposition,

we have H ∈ L1
loc(M) ∩ Lvar(A) and KH ∈ L1

loc(M) ∩ Lvar(A). Hence, K ∈
L1
loc(H ·M) ∩ Lvar(H ·A), where K ∈ L(H ·X). �

3.5. σ-martingales

DEFINITION 3.10.– A semimartingale X is called a σ-martingale if there is a

sequence of predictable sets Dn such that D1 ⊆ · · · ⊆ Dn ⊆ . . . ,
⋃

n Dn = Ω× R+

(up to an evanescent set), and the processes Dn · X are uniformly integrable

martingales for all n. The class of all σ-martingales will be denoted by Mσ.

It is clear that any local martingale is a σ-martingale: put Dn = �0,Tn�, where

{Tn} is a localizing sequence from the definition of a local martingale. Moreover,

as follows from the definition, X is a σ-martingale if and only if X − X0 is a σ-

martingale. On the other hand, our definition of a local martingale implies that X0 is

integrable. So, it is easy to construct examples of σ-martingales X that are not local

martingales: just take a local martingale M and put X = ξ + M , where ξ is non-

integrable F0-measurable random variable. But there are also σ-martingales X with

X0 = 0, which are not local martingales, see examples below.

It follows from the definition that the class of σ-martingales is stable under

stopping and scalar multiplication. That this class is stable under addition is less

obvious.

THEOREM 3.17.– Let X be a semimartingale. The following statements are

equivalent:

1) there is a sequence of predictable sets Dn such that D1 ⊆ · · · ⊆ Dn ⊆ . . . ,⋃
n Dn = Ω× R+ (up to an evanescent set) and Dn ·X ∈ Mloc for all n;

2) X is a σ-martingale;
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3) there is a sequence of predictable sets Dn such that D1 ⊆ · · · ⊆ Dn ⊆ . . . ,⋃
n Dn = Ω× R+ and Dn ·X ∈ H 1 for all n;

4) there is a process G ∈ L(X) such that G 
= 0 identically and G ·X ∈ Mloc;

5) there is a process J ∈ L(X) such that J > 0 identically and J ·X ∈ H 1;

6) there are processes M ∈ Mloc and H ∈ L(M) such that X = X0 +H ·M ;

7) there are processes N ∈ H 1 and K ∈ L(N) such that K > 0 identically and

X = X0 +K ·N .

PROOF.– Note that implications (3)⇒(2)⇒(1), (5)⇒(4), (7)⇒(6) are obvious. If (4)

holds, then put M := G·X and H := 1/G. Then H ∈ L(M) and H ·M = X−X0 by

proposition 3.27, i.e. (6) holds. Similar arguments show that (5) and (7) are equivalent.

Therefore, it is enough to prove implications (1)⇒(3), (3)⇒(5) and (6)⇒(1).

We start with the last one. Let M ∈ Mloc, H ∈ L(M) and X = X0 +H ·M . Put

Dn := {|H| � n}, then Dn are predictable and increasing to Ω× R+. Moreover, by

proposition 3.27, for every n,

Dn ·X = H {|H|�n} ·M,

and the process on the right is a local martingale because the integrand is bounded.

Now assume (1) and let us prove (3). Put Mn := Dn ·X . Since Mn ∈ Mloc, by

theorem 2.7, for every n, there is a localizing sequence {Tn,p}p∈N of stopping times

such that (Mn)Tn,p ∈ H 1 for all p. By lemma 2.1 (2) (with Tn = ∞), there is a

localizing sequence {Sn} of stopping times such that, for every n, Sn � Tn,pn
for

some pn. Hence, (Mn)Sn ∈ H 1. Since Sn ↑ ∞ a.s., the set (Ω × R+) \
⋃

n(Dn ∩
�0, Sn�) is evanescent (and predictable); we denote it by N . Now put Cn := (Dn ∩
�0, Sn�) ∪ N . It is clear that the sets Cn are predictable and increasing to Ω × R+.

Moreover, since N is evanescent, by proposition 3.27, for every n,

Cn ·X = Dn∩�0,Sn� ·X = �0,Sn� · ( Dn ·X) = �0,Sn� ·Mn ∈ H 1.

Finally, we prove implication (3)⇒(5). Put Mn := Dn · X; we have Mn ∈
H 1 for every n. Choose a sequence of numbers {αn} such that 0 < αn � 1/2,

αn‖Mn‖H 1 � 2−n, and αn+1 � αn/2 for all n. Put

J :=
∞∑

n=1

αn Dn .

It is clear that 0 < J � 1. In particular, J ∈ L(X) and the integral Y := J ·X ∈
S is defined. It remains to prove that Y is a martingale from H 1.
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By proposition 3.27,

Dk
· Y = (J Dk

) ·X =
k∑

n=1

αn( Dn ·X) +
( ∞∑
n=k+1

αn

)
Dk

·X

=

k∑
n=1

αnM
n +

( ∞∑
n=k+1

αn

)
Mk.

Since 0 <
∑∞

n=k+1 αn � αk, the second term on the right converges to 0 in

H 1 as k → ∞. On the other hand, since the series
∑

αn‖Mn‖H 1 converges and

the space H 1 is complete (theorem 2.6), the series
∑∞

n=1 αnM
n converges in H 1.

Denote the sum of this series by N . Then, Dk
· Y → N in H 1 as k → ∞. In

particular,

sup
s∈R+

| Dk
· Ys −Ns| P−→ 0, k → ∞.

However, by theorem 3.9,

sup
s�t

| Dk
· Ys − Ys| P−→ 0, k → ∞.

for every t ∈ R+. Hence, trajectories of N and Y coincide on [0, t] with probability

one, for every t. Therefore, N and Y are indistinguishable, and Y ∈ H 1. �

EXERCISE 3.14.– Prove that the sum of two σ-martingales is a σ-martingale.

The equivalence of statement (6) of the theorem to the definition of a σ-martingale

allows us to provide an example of a σ-martingale starting from 0, which is not a local

martingale, namely, the process X in example 2.3. Here is another example.

EXAMPLE 3.3.– Let there be given a complete probability space (Ω,F ,P) with

independent random variables ξ1, . . . , ξn, . . . on it. We assume that

P(ξn = ±n) = 1/(2n2), P(ξn = 0) = 1− 1/n2.

Put tn = n/(n + 1), Ft := σ{ξ1, . . . , ξn, . . . : tn � t} ∨ σ{N }, where N
consists of P-null sets from F . By the Borel–Cantelli lemma, for almost all ω,

ξn(ω) 
= 0 only for a finite number of n, and the series
∑∞

n=1 ξn converges. For such

ω, put

Xt :=
∑

n : tn�t

ξn, t ∈ R+,



Stochastic Integrals 165

while, for other ω, put Xt = 0 for all t ∈ R+. Obviously, X ∈ V , because all

trajectories are piecewise constant (with a finite number of pieces). Next, put

Dn := Ω × ([0, tn] ∪ [1,∞[). Then Dn · X is, obviously, a bounded martingale.

Hence, X is a σ-martingale.

Assume that X is a local martingale. Then, by lemma 2.6, X ∈ Aloc, i.e.

A := Var (X) is a locally integrable increasing process. Denote the compensator of

A by Ã. Then, for every n, Ãtn is the compensator of the process Atn . Since for

almost all ω,

Atn
t =

∑
k : k�n, tk�t

|ξk|, t ∈ R+,

Atn is a process with independent increments on our stochastic basis. It follows

from exercise 2.6 that

Ãtn
t =

∑
k : k�n, tk�t

E|ξk|, t ∈ R+.

Hence, for every n,

Ã1 � Ãtn = Ãtn
tn =

n∑
k=1

1

k
.

Thus, Ã1 = ∞ a.s. This contradiction shows that X is not a local martingale.

This example is especially interesting because X is a process with independent

increments (on the stochastic basis under consideration). In this connection, let us

mention the following fact (without proof): if a local martingale is a process with

independent increments, then it is a martingale (all the notions are with respect to the

same stochastic basis), see [SHI 02].

We know that the integral (in the sense of definition 3.9) with respect to a local

martingale need not be a local martingale, and the integral with respect to a process

with finite variation is not necessarily a process with finite variation. It turns out that

the integral with respect to a σ-martingale is always a σ-martingale.

THEOREM 3.18.– Let X ∈ Mσ and H ∈ L(X). Then H ·X ∈ Mσ.

PROOF.– By theorem 3.17, X = X0 +K ·M , where M ∈ Mloc and K ∈ L(M). By

theorem 3.27, HK ∈ L(M) and H ·X = (HK) ·M . Applying theorem 3.17 again,

we get H ·X ∈ Mσ . �

THEOREM 3.19.– Let X be a σ-martingale. The following statements are equivalent:
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1) X −X0 is a local martingale;

2) X is a special semimartingale.

PROOF.– Implication (1)⇒(2) is obvious (and does not use the assumption that X
is a σ-martingale). Let X be both a σ-martingale and a special semimartingale. By

theorem 3.17, X = X0+H ·M , where M ∈ Mloc and H ∈ L(M). Hence, H ·M is

a special semimartingale, and, by theorem 3.15, H ∈ L1
loc(M) and H ·M ∈ Mloc. �

In view of the above theorem, all conditions that are sufficient for a

semimartingale to be a special semimartingale (see theorems 3.6 and 3.7), are

sufficient for a σ-martingale starting from zero to be a local martingale. We mention

only a few cases.

COROLLARY 3.12.– Let X be a σ-martingale. Assume that X is locally bounded or

has bounded jumps. Then X −X0 is a local martingale.

COROLLARY 3.13.– (1) X ∈ M if and only if X ∈ Mσ ∩ (DL).

(2) X ∈ M if and only if X ∈ Mσ ∩ (D).

PROOF.– The assertions “only if” are evident due to corollary 2.4. Let X ∈ Mσ ∩
(DL). Note that the random variable X0 is integrable. Put Tn := inf {t : |Xt| >
n} ∧ n. Then X∗

Tn
� n + |XTn |, while a random variable XTn is integrable because

X ∈ (DL). Hence, (X−X0)
∗ ∈ A +

loc, hence X ∈ Sp by theorem 3.6 and X ∈ Mloc

by theorem 3.19. We complete the proof by applying theorem 2.8. �

Let us remark that all sufficient conditions mentioned before corollary 3.12 are

“two-sided”, i.e. constrain equally, say, big positive jumps and big (in absolute value)

negative jumps. This is not surprising if we want to check that a semimartingale is a

special semimartingale. However, if we deal with a σ-martingale, we can find “one-

sided” necessary and sufficient conditions.

THEOREM 3.20 (Ansel–Stricker).– Let X be a σ-martingale, X0 = 0. Then, X is a

local martingale if and only if:{
(ΔX)−

}∗ ∈ A +
loc. [3.21]

PROOF.– Since 0 � (ΔX)− � |ΔX|, the necessity follows from lemma 2.7.

Let us prove the sufficiency. Let X be a σ-martingale, X0 = 0, and let [3.21] hold.

We start with a special case, where we can see a central idea of the proof. The general

case will be reduced to the special case.
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Namely, let X be represented as

X = H ·M, M ∈ Mloc ∩ V , H ∈ Lvar(M), H > 0.

Let M = B − C be the decomposition of M ∈ V from proposition 2.3. Since

M ∈ Aloc (lemma 2.6), we have B,C ∈ A +
loc. Their compensators are denoted by B̃

and C̃, respectively. Since B − C ∈ Mloc, we have B̃ = C̃.

Next, Lvar(M) = Lvar(B) ∩ Lvar(C) and

(ΔX)− = (HΔM)− = H(ΔM)− = HΔC = Δ(H · C).

Since H · C ∈ V + and the process (H · C)− is locally bounded, it follows from

[3.21] and the last relation that H · C ∈ A +
loc. theorem 2.21 (2) allows us to conclude

that H · C̃ ∈ A +
loc. Hence, H · B̃ ∈ A +

loc. It follows from theorem 2.21 (3) that

H · B ∈ A +
loc. Thus, H · M ∈ Aloc, hence, X = H · M ∈ Mloc (proposition 2.10

(4)).

We now turn to the general case. By theorem 3.17, there are processes M ∈ Mloc

and H ∈ L(M) such that H > 0 and X = H ·M . By the definition of the stochastic

integral with respect to semimartingales, there is a decomposition M = M0+N +A,

N ∈ Mloc, A ∈ V , such that H ∈ L1
loc(N)∩Lvar(A) and then X = H ·N +H ·A.

Then, obviously, A ∈ Mloc ∩ V and Y := H · A = X −H ·N ∈ Mσ . Finally, for

every Y , we have [3.21]:{
(ΔY )−

}∗
=
{
(ΔX −HΔN)−

}∗ �
{
(ΔX)−

}∗
+
{
(HΔN)+

}∗ ∈ A +
loc,

where we have used the inequalities (x− y)− � x−+ y+ for real x, y, relation [3.21]

(for X) and also relation (HΔN)∗ ∈ A +
loc, which follows from lemma 2.7 due to

the fact that HΔN = Δ(H · N), and H · N ∈ Mloc. According to the special case

considered above, we have Y ∈ Mloc. Thus, X = H ·N + Y ∈ Mloc. �

LEMMA 3.8.– Let X be an adapted càdlàg process, X0 = 0. Then{
(ΔX)−

}∗ ∈ A +
loc ⇐⇒ {

X−}∗ ∈ A +
loc.

PROOF.– Since X− � X−
− + (ΔX)− and the process X− is locally bounded,

implication ⇒ is obvious. Assume that
{
X−}∗ ∈ A +

loc. Put

Tn := inf {t : Xt > n} ∧ Sn, where {Sn} is a localizing sequence for
{
X−}∗

. Since

X− � n on �0, Tn�, X − X− � −X− − n and (ΔX)− � X− + n on this

stochastic interval. Hence,({
(ΔX)−

}∗)Tn ∈ A +,
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{
(ΔX)−

}∗ ∈ A +
loc. �

Our final result includes theorems 3.19 and 3.20.

THEOREM 3.21.– Let X be a σ-martingale. The following statements are equivalent:

1) X −X0 is a local martingale;

2) there is a special semimartingale Y such that ΔX � ΔY ;

3) there is a special semimartingale Y such that X � Y .

PROOF.– Implications (1)⇒(2) and (1)⇒(3) are trivial. To prove the converse

implications, let us write the canonical decomposition of the special semimartingale

Y in the form Y = Y0 +N +B, where N ∈ Mloc, B ∈ V , and B is predictable. Put

M := X − X0 − N . It is clear that M is a σ-martingale with M0 = 0. In case (2),

ΔM � ΔB, where (ΔM)− � (ΔB)− � Var (B) ∈ A +
loc. Therefore, by

theorem 3.20, M is a local martingale, hence, X −X0 is a local martingale.

Now let (3) hold. Then

M � (Y0 −X0) +B.

Let {Sn} be a localizing sequence for B as an element of Aloc, Tn := Sn ∧
0{Y0−X0<−n}. It is clear that {Tn} is a localizing sequence. On the set {Y0 −X0 <
−n}, we have Tn = 0 and MTn = 0, and, on its complement, Tn = Sn and M− �
(Y0−X0)

−+B− � n+Var (B). It follows that
{
M−}∗ ∈ A +

loc. By lemma 3.8 and

theorem 3.20, M is a local martingale, hence, X −X0 is a local martingale. �



Appendix

A.1. Theorems on monotone classes

Theorems on monotone classes are a widespread technical tool in stochastic

analysis. Here is the scheme of how these theorems are applied. Let a measurable

space (Ω,F ) be given. Suppose that we want to check some property for all

elements of the σ-algebra F . In other words, if we denote by D the collection of all

subsets of Ω, having the property we are interested in, then our goal is to establish the

inclusion

D ⊇ F . [A.1]

Next, we can efficiently check this property on a subclass C of the σ-algebra F :

C ⊆ D . [A.2]

Moreover, the class C is wide enough – the smallest σ-algebra it generates is F :

F = σ{C }. [A.3]

Two theorems given below (on monotone classes and on π-λ-systems) provide

sufficient additional conditions on the sets C and D , that allow us to deduce [A.1]

from [A.2] and [A.3]. Two extreme cases of such assumptions are trivial:

– C is a σ-algebra, no assumptions on D ;

– D is a σ-algebra, no assumptions on C .

The first case is of no interest: it means that C = F , i.e. we can check directly the

property of interest for all elements of the σ-algebra F . The second case is a standard
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tool. For example, it is used in the reasoning that allows us to conclude that a mapping

T from (Ω′,F ′) to (Ω,F ) is measurable if T−1(A) ∈ F ′, where A runs over a class

C of subsets of Ω, satisfying [A.3].

DEFINITION A.1.–

1) A collection D of subsets of Ω is called a monotone class, if, for any sequence

An ∈ D , n = 1, 2, . . . , such that An ↑ A or An ↓ A, we have A ∈ D .

2) A collection C of subsets of Ω is called a π-system, if it is stable under finite

intersections: if A,B ∈ C , then A ∩B ∈ C .

3) A collection D of subsets of Ω is called a λ-system, if (1) Ω ∈ D ; (2) it follows

from A,B ∈ D and A ⊆ B that B\A ∈ D ; (3) it follows from An ∈ D , n = 1, 2, . . . ,

and An ↑ A, that A ∈ D .

THEOREM A.1 (on monotone classes).– Let C be an algebra, D a monotone class,

and [A.2] and [A.3] are valid. Then [A.1] holds.

THEOREM A.2 (on π-λ-systems).– Let C be a π-system, D a λ-system, and [A.2]

and [A.3] hold. Then we have [A.1].

There are several versions of the monotone class theorem for functions. We use

the following most widespread version of this theorem in the book.

THEOREM A.3.– Let H be a linear space of real-valued functions with finite values

(respectively real-valued bounded functions) on a set Ω. Assume also that H contains

constant functions and has the following property: for any increasing sequence {fn}
of nonnegative functions from H , the function f = limn fn belongs to H if it is

finite (respectively bounded). Under these assumptions, if C is a subset of H , which

is closed under multiplication, the space H contains all functions with finite values

(respectively bounded functions) that are measurable with respect to the σ-algebra

σ(C ) generated by functions from C .

EXERCISE A.1.– Deduce theorem A.3 from theorem A.2 under an additional

assumption that all functions in C are indicator functions, i.e. take values 0 and 1.

As mentioned above, theorem A.3 contained the additional assumption that H
is closed under the uniform convergence. In fact, this assumption follows from other

assumptions of the theorem.

In the application of this result, similarly, we take H as the class of all functions

having the property we are interested in, while C is a collection of functions for which

the property of interest can be directly verified.
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A.2. Uniform integrability

Let (ξα)α∈A be a family of integrable random variables on a probability space

(Ω,F ,P).

DEFINITION A.2.– A family (ξα)α∈A of integrable random variables is called

uniformly integrable if

lim
c↑+∞

sup
α∈A

∫
{|ξα|>c}

|ξα| dP = 0.

It is clear from the definition that the uniform integrability of a family of random

variables is, in fact, a property of their one-dimensional (1D) distributions. Thus,

generally speaking, the uniform integrability property may refer to the case where

random variables are given on different probability spaces.

A family consisting of a single integrable random variable is uniformly integrable

because of the absolute continuity of the Lebesgue integral. Therefore, if each ξα
satisfies |ξα| � η, where Eη < ∞, then a family (ξα)α∈A is uniformly integrable.

THEOREM A.4.– A family (ξα)α∈A of random variables is uniformly integrable if and

only if

sup
α∈A

E|ξα| < ∞

and, for every ε > 0, there is δ > 0 such that B ∈ F and P(B) < δ imply∫
B

|ξα| dP < ε for all α ∈ A.

Recall that the convex hull of a set X in a linear space consists of elements x
that can be represented in the form x =

∑n
i=1 βixi, where n is a natural number,

β1, . . . , βn are nonnegative numbers,
∑n

i=1 βi = 1, and x1, . . . , xn ∈ X . The convex

hull of X is denoted sometimes by convX .

THEOREM A.5.–

1) The closure in L1(P) of the convex hull of a uniformly integrable family of

random variables is uniformly integrable.

2) If (ξα)α∈A and (ηβ)β∈B are uniformly integrable families of random variables,

then the family {ξα + ηβ : α ∈ A, β ∈ B} is uniformly integrable.

THEOREM A.6 (Vallée-Poussin criterion).– Let (ξα)α∈A be a family of random

variables. The following statements are equivalent:
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1) the family (ξα)α∈A is uniformly integrable;

2) there is a nonnegative increasing function Φ on R+ such that

lim
t↑+∞

Φ(x)

x
= ∞ and sup

α∈A
EΦ(|ξα|) < ∞.

Moreover, the function Φ can be taken convex.

The Vallée–Poussin criterion with Φ(x) = xp says that every bounded subset of

Lp(P), where p > 1, is uniformly integrable. This is not true for p = 1.

EXERCISE A.2.– Construct a sequence {ξn} of random variables such that

supn E|ξn| < ∞, but which is not uniformly integrable.

The following proposition is often used in this book.

PROPOSITION A.1.– Let (Fα)α∈A be an arbitrary family of sub-σ-algebras of a

σ-algebra F , and E|ξ| < ∞. Put ξα = E(ξ|Fα). Then the family (ξα)α∈A is

uniformly integrable.

EXERCISE A.3.– Prove proposition A.1 using: (1) definition A.2; or (2) the Vallée–

Poussin criterion.

The role of the uniform integrability can be seen from the following theorem.

THEOREM A.7.– Let {ξn} be a sequence of integrable random variables, and let ξ be

a random variable. The following statements are equivalent:

1) the sequence {ξn} converges to ξ in probability and is uniformly integrable;

2) the random variable ξ is integrable and the sequence {ξn} converges to ξ in

L1(P), i.e., E|ξn − ξ| → 0 as n → ∞.

In particular, the uniform integrability is sufficient for passing to the limit under

the expectation sign in sequences, converging in probability (or a.s.). For sequences

of nonnegative random variables, this condition is also necessary.

COROLLARY A.1.– Assume that a sequence {ξn} of nonnegative integrable random

variables converges in probability to a random variable ξ and

lim
n→∞Eξn = Eξ < ∞.

Then the sequence {ξn} is uniformly integrable and converges to ξ in L1(P).
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PROOF.– We have

E|ξn − ξ| = E(ξn − ξ) + 2E(ξ − ξn)
+.

The first term on the right converges to 0 by the assumption. Now note that random

variables (ξ−ξn)
+ are nonnegative, converge to 0 in probability and are majorized by

the integrable random variable ξ. Therefore, by the dominated convergence theorem,

their expectations converge to 0. Thus, E|ξn − ξ| → 0. The uniform integrability of

{ξn} follows from implication (2)⇒(1) in theorem A.7. �

A.3. Conditional expectation

In this book, we often deal with conditional expectations of random variables

which may not be integrable. Working with conditional expectations of such random

variables needs some accuracy because they may not be defined or take infinite

values. Proposition A.2 allows us to reduce the case where conditional expectations

are defined and take only finite values to the case of integrable random variables.

Let a probability space (Ω,F ,P) and a sub-σ-algebra G ⊆ F be given. Recall

how the conditional expectation of a random variable ξ with respect to the σ-algebra

G is defined, see [SHI 96] Chapter II, S 7.

First, let ξ � 0. Then the conditional expectation of ξ with respect to G is a random

variable with values in [0,+∞], denoted by E(ξ|G ), such that E(ξ|G ) is G -measurable

and, for every B ∈ G ,∫
B

ξ dP =

∫
B

E(ξ|G ) dP. [A.4]

The existence of conditional expectation follows from the Radon–Nikodým

theorem, and it is defined uniquely up to sets of P-measure zero.

The conditional expectation E(ξ|G ) of an arbitrary random variable ξ with respect

to G is considered to be defined if, P-a.s.,

min
(
E(ξ+|G ),E(ξ−|G )

)
< ∞,

and it is given by the formula

E(ξ|G ) := E(ξ+|G )− E(ξ−|G ),

where, on the set {E(ξ+|G ) = E(ξ−|G ) = +∞} of zero measure, the expression

E(ξ+|G )− E(ξ−|G ) is defined arbitrarily (keeping G -measurability).
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PROPOSITION A.2.– Let ξ be a random variable. The following statements are

equivalent:

1) E(ξ|G ) is defined and is finite P-a.s.;

2) E(|ξ| |G ) < ∞ P-a.s.;

3) there exists an increasing sequence of sets B1 ⊆ · · · ⊆ Bn ⊆ . . . such that

Bn ∈ G for every n, P(∪nBn) = 1 and E|ξ| Bn
< ∞ for every n.

If (3) holds, then

E(ξ|G ) Bn = E(ξ Bn |G ) P-a.s. [A.5]

Statement (3) means that the equality [A.5] allows us to define E(ξ|G ) via the

conditional expectations E(ξ Bn
|G ) of integrable random variables ξ Bn

.

PROOF.– Implication (1)⇒(2) follows from the definition of the conditional

expectation and its additivity for nonnegative random variables, which is quite

elementary. If (2) holds, then put

Bn = {E(|ξ| |G ) � n}.

Then (3) holds for this sequence (Bn). In particular, the finiteness of E|ξ| Bn

follows from the equality [A.4] applied to |ξ| instead of ξ and Bn instead of B.

Let (3) hold. First, assume that ξ � 0. Put

η :=

∞∑
n=1

E(ξ An |G ), An := Bn \Bn−1, B0 := ∅.

Note that

η An = E(ξ An |G ) P-a.s. [A.6]

Since η is G -measurable and, for any B ∈ G ,

∫
B

η dP =

∞∑
n=1

∫
B

E(ξ An |G ) dP =

∞∑
n=1

∫
B∩An

E(ξ An |G ) dP

=
∞∑

n=1

∫
B∩An

ξ An dP =

∫
B

ξ dP,
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we have η = E(ξ|G ). In view of [A.6], (1) and [A.5] hold.

Now let ξ be an arbitrary random variable. Then (3) holds for ξ+ and ξ−. As we

have proved, (1) and [A.5] take place for ξ+ and ξ−, hence the same is true for ξ. �

A.4. Functions of bounded variation

Here we collect a few results concerning functions of bounded variation that are

used in the book. Their proofs can be found in many textbooks on analysis or

probability theory. Most of the statements are easy to prove.

Let a function f : R+ → R be given. Define the variation of f on an interval [0, t],
t ∈ R+, by

varf (t) = sup

n∑
k=1

|f(xk)− f(xk−1)|,

where the supremum is taken over all n and over all partitions 0 = x0 < x1 < · · · <
xn = t of [0, t].

varf (t) takes values in [0,+∞] and is nondecreasing in t.

If f is right-continuous at t and its variation is finite on [0, t + ε] for some ε > 0,

then varf is right-continuous at t.

If f is right-continuous everywhere on [0, t), then its variation can be computed

by the formula

varf (t) = lim
n→∞

2n∑
k=1

|f(kt2−n)− f((k − 1)t2−n)|. [A.7]

Let a function f : R+ → R be right-continuous everywhere on R+, f(0) = 0, and

let varf (t) be finite for all t ∈ R+. Put

g(t) :=
varf (t) + f(t)

2
, h(t) :=

varf (t)− f(t)

2
. [A.8]

The functions g and h start from 0, are right-continuous and increasing (in the

sense that s � t implies g(s) � g(t) and similarly for h), and

f = g − h, varf = g + h.
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The functions g and h are determined by these properties in a unique way. Thus,

f can be represented as the difference of two right-continuous functions starting from

0; in particular, there exists a finite limit lims�t f(s) at every point t > 0.

The converse is also true: the difference of two increasing functions has a finite

variation on any finite interval [0, t].

A Lebesgue–Stieltjes measure on (R,B(R)) is defined as a measure m on this

space such that m(I) < ∞ for every bounded interval I . The formula

m((0, t]) = f(t) [A.9]

provides a one-to-one correspondence between Lebesgue–Stieltjes measures

vanishing on (−∞, 0] and increasing right-continuous functions f : R+ → R with

f(0) = 0. Denote by mf the Lebesgue–Stieltjes measure corresponding to f . For a

measurable function H : R+ → R and t ∈ [0,+∞], the Lebesgue–Stieltjes integral

t∫
0

H(s) df(s)

is understood as the Lebesgue integral∫
(0,t]

H(s)mf (ds);

here, if t = +∞, the interval (0, t] is understood as (0,+∞).

Now let a function f : R+ → R be right-continuous at all points of R+, f(0) = 0,

and let varf (t) be finite for all t ∈ R+. Define functions g and h by relations [A.8],

then mg +mh is the Lebesgue–Stieltjes measure corresponding to varf . By Radon–

Nkodým theorem, there is a measurable function H : R+ → [0, 1] such that, for every

t ∈ R+,

g(t) =

t∫
0

H(s) d varf (s), h(t) =

t∫
0

(1−H(s)) d varf (s),

then

f(t) =

t∫
0

(2H(s)− 1) d varf (s).
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It follows from the previous formula, clearly, that

varf (t) �
t∫

0

|2H(s)− 1| d varf (s),

hence (mg +mh)({s : 0 < H(s) < 1}) = 0. In other words, there are sets E+ and

E− from B(R+) such that E+ ∩ E− = ∅, E+ ∪ E− = R+ i and

g(t) =

t∫
0

E+(s) d varf (s), h(t) =

t∫
0

E−(s) d varf (s). [A.10]

This fact can also be obtained from the Hahn decomposition for a signed measure.

Let a function f : R+ → R be right-continuous at all points of R+, f(0) = 0,

varf (t) be finite for all t ∈ R+, and let H : R+ → R be a measurable function. If∫ t

0

|H(s)| d varf (s) < ∞

for some t ∈ R+, then we define the integral

t∫
0

H(s) df(s)

by

t∫
0

H(s) df(s) :=

t∫
0

H(s) dg(s)−
t∫

0

H(s) dh(s),

where the functions g and h are taken from [A.8]. If
∫ t

0
|H(s)| d varf (s) < ∞ for all

t ∈ R+, then the function

t �
t∫

0

H(s) df(s)

starts from zero, is right-continuous, and its variation on [0, t] is equal to∫ t

0

|H(s)| d varf (s)

for every t ∈ R+.
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Let functions f, g : R+ → R be right-continuous at all points of R+, have finite

variation on [0, t] for every t ∈ R+, f(0) = g(0) = 0. If f and g are increasing

functions, we write df � dg if the corresponding Lebesgue–Stieltjes measures are

absolutely continuous: mf � mg . In the general case, df � dg means that d varf �
d varg .
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Chapter 1

General references: [DEL 72, DEL 78, ELL 82, HE 92, JAC 03, LIP 89, MED 07,

MÉT 82, YEH 95].

Section 1.1. Concerning continuity of the stochastic basis generated by Lévy

processes or, more generally, by a process with independent increments

(Remark 1.1), see [KRU 10].

Section 1.3. For the proof of Theorem 1.7 see, e.g., [DEL 72] or [DEL 78].

Proposition 1.12 is taken from [HE 92].

Section 1.4. The proof of Theorem 1.12 can be found in [DEL 78].

Chapter 2

General references: [BIC 02, DEL 72, DEL 82, ELL 82, HE 92, JAC 79, JAC 03,

LIP 89, MED 07, MÉT 82, MEY 76, PRO 05, YEH 95].

Section 2.1 The proofs of theorems 2.1, 2.2, 2.3, 2.5 can be found in many sources,

in particular, in [DEL 82, ELL 82, HE 92, KAL 02, MED 07, YEH 95].

Section 2.7. The property [2.52] of the quadratic variation is proved, e.g., in

[DEL 82, HE 92, JAC 03, MED 07, MEY 76, PRO 05, YEH 95].
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Section 2.8. For the proofs of the Burkholder–Davis–Gundy inequality see, e.g.,

[DEL 82, HE 92, LIP 89].

Chapter 3

General references: [BIC 02, DEL 82, ELL 82, HE 92, JAC 79, JAC 03, LIP 89,

MED 07, MÉT 82, MEY 76, PRO 05, YEH 95].

Section 3.2. For the proofs of Itô’s formula see, e.g., [DEL 82, HE 92, MED 07,

MEY 76, PRO 05, YEH 95].

Section 3.5. The form of the Ansel–Stricker theorem presented in theorem 3.21

seems to be new.

Appendix

Section A.1. Proofs of Theorems A.1–A.3 can be found, e.g., in [DEL 78, SHA 88,

SHI 96, KAL 02].

Section A.2. For more details, see, e.g., [DEL 78, SHI 96, KAL 02].

Section A.4. See, e.g. [KAL 02].
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