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Basic Notation

The symbol O indicates the end of the proof.

The symbol := means “put by definition”.

R = (—00, +00) = the set of real numbers, R, = [0, +00).
R? = d-dimensional Euclidean space.

Q = the set of rational numbers, Q1 = QN R,.

N ={1,2,3,...} = the set of natural numbers.

a Vb =max{a,b}, a A b= min{a, b} fora,b € R.
at=aVv0,a” =(—a)VO0fora€R.

lim= lim .
sITt s—t, s<t

1 5 = the indicator function of the set B.
E = expectation.
E(-|%) = conditional expectation with respect to the o-algebrs ¥.

FNYG = o(FJ¥) = the smallest o-algebra containing the o-algebras .7
and ¢.

Vaea Za = 0(Upes Fa) = the smallest o-algebra containing the o-algebras
Fo, o€ A



Preface

The arbitrage theory for general models of financial markets in continuous time is
based on the heavy use of the theory of martingales and stochastic integration (see
the monograph by Delbaen and Schchermayer [DEL 06]). Our book gives an
exposition of the foundations of modern theory of stochastic integration (with respect
to semimartingales. It follows traditions of the Strasbourg School of Stochastic
Processes. In particular, the exposition is inspired by the monograph by Dellacherie
[DEL 72]) in Chapter 1 and by the course by Meyer [MEY 76] in Chapters 2 and 3.
In Chapter 1, the so-called general theory of stochastic processes is developed. The
second chapter is devoted to detailed study of local martingales and processes with
finite variation. The theory of stochastic integration with respect to semimartingales
is a subject of Chapter 3. We do not consider vector stochastic integrals, for which
we refer to Shiryaev and Cherny [SHIO02]. The last section is devoted to
o-martingales and the Ansel-Stricker theorem. Some results are given without
proofs. These include the section theorem, classical Doob’s theorems on martingales,
the Burkholder—Davis—Gundy inequality and Itd’s formula.

Our method of presentation may be considered as old-fashioned, compared to, for
example, the monograph by Protter [PRO 05], which begins with an introduction of
the notion of a semimartingale; in our book, semimartingales appear only in the final
chapter. However, the author’s experience based on the graduate courses taught at the
Department of Mechanics and Mathematics of Moscow State University, indicates
that our approach has some advantages.

The text is intended for a reader with a knowledge of measure-theoretic probability
and discrete-time martingales. Some information on less standard topics (theorems
on monotone classes, uniform integrability, conditional expectation for nonintegrable
random variables and functions of bounded variation) can be found in the Appendix.
The basic idea, which the author pursued when writing this book, was to provide
an affordable and detailed presentation of the foundations of the theory of stochastic
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integration, which the reader needs to know before reading more advanced literature
on the subject, such as Jacod [JAC 79], Jacod and Shiryaev [JAC 03], Liptser and
Shiryayev [LIP 89], or a literature dealing with applications, such as Delbaen and
Schchermayer [DEL 06].

The text is accompanied by more than a hundred exercises. Almost all of them are
simple or are supplied with hints. Many exercises extend the text and are used later.

The work on this book was partially supported by the International Laboratory
of Quantitative Finance, National Research University Higher School of Economics
and Russian Federation Government (grant no. 14.A12.31.0007). I wish to express
my sincere thanks to Tatiana Belkina for a significant and invaluable assistance in
preparing the manuscript.

Alexander GUSHCHIN
Moscow, May 2015
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General Theory of Stochastic Processes

1.1. Stochastic basis and stochastic processes

To describe the dynamics of random phenomena in time, the notion of a stochastic
basis is used in stochastic calculus.

DEFINITION 1.1.— A filtration on a measurable space (£2,.%) is a nondecreasing
family F = (.%;);cr, of sub-c-algebras of the o-algebra .7: 7%, C %, C .F for all
s < t,s,t € Ry. A stochastic basis is a probability space equipped with a filtration,
i.e. a stochastic basis is a quadruplet B = (Q,.#,F,P), where (Q,.%#,P) is a
probability space and ¥ is a filtration on (€, .%).

If a discrete filtration is given, i.e. a nondecreasing family of sub-c-algebras .7y C
F1 C .- CF, C-.- C.Z,then it can be extended to a filtration in the sense of
definition 1.1 in a natural way. Namely, put .%; := %[, where [-] is the integer part
of a number.

If F = (%)ier, is a filtration, then define

yt-l— = m ys, tER+,
s: 8>t

Gy = \/ Fs, t€(0,00].
s: s<t

Put also Fy_ := Fo, Foo = Foo_.

Z (respectively .#;_) is usually interpreted as the class of events occurring before
or at time ¢ (respectively strictly before ¢).
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DEFINITION 1.2.— A stochastic basis B = (2, #,F, P) is called right-continuous if
the filtration F = (.%;).cr, is right-continuous, i.e. #; = ., foreveryt € R .. A
stochastic basis B = (Q, #,F, P) is called complete if the o-algebra & is complete
(relative to P) and the o-algebra .% contains all sets of measure 0 from .%. We say
that a stochastic basis B = (Q,.%,F, P) satisfies the usual conditions if it is right-
continuous and complete.

Recall that a o-algebra . is complete relative to P if A € #,P(A)=0,BC A
imply B € .Z.

The condition that a stochastic basis is right-continuous is essentially necessary
for the development of the theory. The completeness property of a stochastic basis is
much less significant. Statements that are proved for a complete stochastic basis either
remain valid without the completeness or need a little correction. On the other hand,
the completeness property is very undesirable, especially in the statistics of stochastic
processes, as it is not preserved under a change of measure to a non-equivalent one.
Nevertheless, in this book, we will always assume, unless otherwise stated, that a
stochastic basis satisfies the usual conditions.

EXAMPLE 1.1.— Let Q = D(R) be the space of functions w: Ry ~» R which are
right-continuous at every ¢ € R and have finite left-hand limits at every ¢ €]0, oo,
or Q = C(R) is the space of continuous functions w: R, ~~ R. Define mappings
X;: Q2 — R, t € Ry, by X;(w) = w(t). Define the o-algebra .7, t € R, on Q) as
the smallest o-algebra with respect to which all mappings X, s < t, are measurable.
Finally, put # = .Z{.. It is obvious that F = (.#),cr, is a filtration on (Q, 7).
X = (Xt)ter . is said to be the canonical stochastic process on Q.

EXERCISE 1.1.— Show that the filtration F” in example 1.1 is not right-continuous.

If a stochastic basis does not satisfy the usual conditions, then there is a “minimal”
extension of it to a stochastic basis satisfying the usual conditions. The corresponding
construction is given in the following exercises.

EXERCISE 1.2.-Let B = (Q,.%,F = (%;)cr,,P) be a stochastic basis. Put
F* = (%14 )icr, - Show that B := (Q,.%,F',P) is a right-continuous stochastic
basis.

EXERCISE 1.3.—Let B = (2, 7 ,F = (%):cr, , P) be a stochastic basis. Put .4 :=
{B CQ: BC Aforsome A € .7 with P(A) =0}, #F .= {AAB: A€ #,B ¢
NY, FP = {AAB: A € %,B € 4}, tcR,. Show that #F and .Z} are o-
algebras. For C € ZP, put P(C) := P(A) if C has a foom C = AAB, A € 7,
B € /. Show that P is well defined. Show that P is a probability on (£2,.# "), whose
restriction onto .% is P. Show that BY := (Q,.#" FP P), where FP := (ﬁtp)te]]{+7
is a complete stochastic basis.
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EXERCISE 1.4.—Let B = (Q,.%,F = (%;):cr. , P) be a stochastic basis. Show that
(B4)" = (B°)".

REMARK 1.1.— Tt often happens that the stochastic basis B is right-continuous. For
instance, in example 1.1, this is the case if the measure P on (2,.%#) is such that the
canonical process X is a Lévy process (in particular, if X is a Wiener or a Poisson
process).

Let B = (Q,%7,F = (%)ter.,P) be a stochastic basis satisfying the usual
conditions. A stochastic process with values in a measurable space (E, &) is a family
X = (Xi)ier, of measurable mappings X; from (Q2,.7) to (E,&). We usually
indicate the range E of values of a stochastic process, assuming implicitly that a
topology is given on E' and & is the o-algebra Z(FE) of Borel sets, i.e. the o-algebra
generated by open sets. If £ = R?, then it is assumed that the topology corresponds
to the Euclidean metric. The extended real line [—o0, +00] is assumed to be equipped
with the natural topology as well. We do not usually indicate the range of values of a
stochastic process, which means that it takes real values, i.e. E = R. It is obvious
that a stochastic process X with values in R is a set (X!,..., X9) of d real-valued
stochastic processes.

Essentially, a stochastic process X is a function of two variables: w and ¢. To
emphasize this fact, the value of X at outcome w and at time ¢ will be denoted not only
by X;(w) but also by X (w, t). In what follows, measurability properties of stochastic
processes as functions of two variables, i.e. mappings from the space {2 x R equipped
with some o-algebra, to F, play an important role.

A set B C Q x Ry is said to be a random set if 1 g is a stochastic process.

The trajectory of a stochastic process X, corresponding to outcome w, is the
mapping ¢ ~ X (w,t) from Ry to E.

A process X with values in a topological space E is called continuous (or
right-continuous, or left-continuous, or right-continuous with left-hand limits) if all
its trajectories are continuous (respectively right-continuous, or left-continuous, or
right-continuous and have left-hand limits for every ¢ > 0). To avoid
misunderstanding, we emphasize that left-hand limits must belong to E. Thus, if
E = R, aright-continuous process with left-hand limits must have a finife limit from
the left for every ¢ > 0. For a right-continuous process with left-hand limits, we use
the French abbreviation cadlag (continue a droite avec des limites a gauche, i.e.
right-continuous with left-hand limits).

Linear operations on stochastic processes with values in a linear space E are
understood pointwise.
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If a process X with values in a linear topological space F is cadlag, then we define
two new stochastic processes X _ = (X;_);er, and AX = (AX;);cr, with values
in F by

Xo-=Xo, X =lmX, >0,

AX=X-X_.
Note that A Xy = 0, according to this definition.

Let X be a real-valued right-continuous stochastic process. Assume that
lim; o X¢(w) exists (respectively exists and is finite) for almost all w. In this case,
X is understood as any mapping from €2 to [—o0, +00] (respectively to R) such that

Xoo(w) = thi& Xi(w) P-as.

It follows from the completeness of the stochastic basis that any such mapping
X 18 an F,-measurable random variable. We also put X, := X, under the
same assumptions.

EXERCISE 1.5.— Prove the assertion concerning the measurability of X .

DEFINITION 1.3.— A stochastic process Y is called a modification of a stochastic
process X, if P(Y; # X;) = O forevery t € Ry.

DEFINITION 1.4.— Stochastic processes X and Y are called indistinguishable if
P{w: there exists t € R such that X}(w) # Y:(w)} = 0.

We will also speak in this case that Y (respectively X) is a version of X
(respectively Y).

A random set is called evanescent, if its indicator is indistinguishable with the
process which is identically zero.

Sometimes in the literature, the term “version” is used as a synonym of the term
“modification”.

It is assumed in the definition of indistinguishability that the corresponding set
belongs to the o-algebra .% . Let us note that, for measurable processes X and Y (see
definition 1.8 in section 1.3), the completeness of the o-algebra .# guarantees that this
set is measurable, see theorem 1.7.

It is clear that if two processes are indistinguishable, then they are modifications
of each other. The converse is generally not true.
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EXAMPLE 1.2.— Let Q = [0, 1], .# be the o-algebra of Lebesgue measurable sets, and
let P be the Lebesgue measure on (£2,.%). Put X;(w) = 0 for all w and ¢,

Yi(w) 1, ift=w,
w) =
! 0, ift+#w.

Then X and Y are modifications of each other, but they are not indistinguishable.

PROPOSITION 1.1.— If X and Y are right-continuous (or left-continuous), and Y is a
modification of X, then X and Y are indistinguishable.

PROOF.— For every rational » € Q, put N, = {w: X, (w) # Y.(w)}, and let
N=U,eq, Nr. Then P(N) = 0 because Y is a modification of X. However, for
w € Q\ N, trajectories of X.(w) and Y.(w) coincide in all rational points and, hence,
in all points due to the assumption of one-sided continuity. O

In this book, we will often encounter a situation where some stochastic processes
are constructed from other stochastic processes. Often the result of such a
construction is not a concrete stochastic process but any one in a class of
indistinguishable processes. The situation here is similar, say, to that occurs when
taking the conditional expectation, which is defined as any random variable from a
fixed equivalence class of random variables that coincide almost surely. Uniqueness
here could be achieved by considering the equivalence classes of indistinguishable
stochastic processes. However, this approach has its drawbacks, and its use, in our
opinion, would lead to a complication of terminology and notation. However, the
reader should keep in mind this circumstance and understand that, say, equalities or
inequalities hold for the equivalence classes of indistinguishable stochastic
processes; with regard to stochastic processes themselves, these relations are valid
only up to an evanescent set.

1.2. Stopping times

Throughout this section, we will assume that a right-continuous stochastic basis
B=(Q,.%,F = (%)ier,,P) is given.

DEFINITION 1.5.— A stopping time is a mapping T': Q — [0, co] such that {T' < ¢} €
F forevery t € Ry.

It follows from the definition that a stopping time 7" is an extended (i.e. with values
in the extended real line) random variable.

EXAMPLE 1.3.—Let ¢t € [0, 00]. Put T'(w) = ¢. Then T is a stopping time.

EXERCISE 1.6.— Let T be a stopping time. Prove that {T' = co} € F.
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EXERCISE 1.7.— Let T be a stopping time and ¢ € R.. Show that T" + ¢ is a stopping
time. Construct an example of a stopping time 7" > 1 such that T’ — ¢ is not a stopping
time for all € > 0.

In the next two propositions, the right-continuity of the filtration is used.

PROPOSITION 1.2.— A mapping T:  — [0,00] is a stopping time if and only if
{T <t} € Fforeveryt € Ry.

PROPOSITION 1.3.— Let Ty, ..., T,, ... bestopping times. Then sup,, 1T}, and inf,, T},
are stopping times.

EXERCISE 1.8.— Prove propositions 1.2 and 1.3.

DEFINITION 1.6.— Let T be a stopping time. Denote by #r the following class of
sets:

Fr:={A€ F: AN{T <t} € F foreveryt € R }.
EXERCISE 1.9.— Prove that % is a o-algebra.

The o-algebra % is usually interpreted as the class of events occurring before
or at a random time 7'. %7 should not be confused with the smallest o-algebra, with
respect to which the mapping 7' is measurable. The latter, as a rule, is much more
narrow.

Sometimes in the literature, in the definition of .Z, the assumption A € %, is
replaced by A € .%. The difference between these definitions is not essential.

PROPOSITION 1.4.— Let T be a stopping time. If A € %, then
AN{T <t} € # foreverytcR,. [1.1]

Conversely, if A € %, and [1.1] is valid, then A € .

PROOF.— Let A € Z7,t € R,. Then

An{T <t} = G(Am{Tgt—l/k}) € F.
k=1

Conversely, let A € Z, and [1.1] be valid. Then, for any ¢t € R, and for any

natural m,

AnN{T <t} =
k

(AN{T <t+1/k}) € Fis1/m,

el
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hence,

AN{T < ﬂ Fit1/m = F

in view of the right-continuity of the filtration. g

THEOREM 1.1.— Let T" and S be stopping times. Then:
DifT =t,t € |0,00], then Fr = Fy;
2) the extended random variable T is .%-measurable;
3)if Be Fg,then BN{S KT} € Fr;
4)if S < T, then g C Fr;
5) Fspar = Fs N Fr, Fsyr = Fs \| Fr;
6) the sets {S < T}, {S =T} and {S > T} belong to Fs N Fr.

PROOF.— The proof of (1) and (2) is left to the reader as an exercise. Let us prove (3).
We have, for every t € R,

Bn{S<TIn{T<t}=Bn{S<t})N{T <t}n{SAt<T At}

Now note that BN {S < t} € %, by the definition of Fg, {T < t} € %, by the
definition of a stopping time, and {S At < T' At} € F;, because S Atand T At are
Z-measurable (which follows from the definition of the stopping time).

Assertion (4) follows directly from (3).

The inclusion F g C Fs N Fr follows from (4). Let B € % g N Z7. Then, for
teRy,

BN{SAT <t} =Bn({S<t}u{T<t})
= (BN{S<t})U(BN{T <t}) € F.

The inclusion Fg\/ #r C Fgyr follows from (4). Let B € Fgyr. Then B N
{S<T}=Bn{SVT T} € Fr dueto (3). Similarly, BN {T < S} € Fs.
Therefore, B= (BN{S <T}) U (BN{T < S}) € s\ Fr.

Since {S > T} =Q\{S<T} e FrductoB)and {S =T} ={S > T}\{S >
T}, to prove (6), it is enough to check that {S > T} € Zr. But this follows from the
equality {S > T} = {S AT = T} and .Z#r-measurability of random variables S A T
and 7', see (2) and (4). O
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EXERCISE 1.10.— Prove assertions (1) and (2) of theorem 1.1.
Given a mapping T: Q — [0,00] and a set A C (), define a new mapping
Ty: Q — [0,00] by

Ta(w) = {T(w), ifw e A,

00, ifw¢ A.

PROPOSITION 1.5.— Let T be a stopping time, A C €. Then T4 is a stopping time if
and only if AN {T < oo} € Fr. In particular, if A € Fr, then T4 is a stopping
time.

PROOF.— The claim follows from
{Ta <t} =An{T <t}, teR,. O
The stopping time T4 is called the restriction of a stopping time 7" on the set A.

We associate another o-algebra .%p_ with a stopping time 7. Elements of .Zp_
are usually interpreted as events occurring strictly before a stopping time 7.

DEFINITION 1.7.— Let T be a stopping time. Denote by .#_ the smallest o-algebra
containing the o-algebra .% and all sets of the form

An{t<T}, teRy, AcZ.

THEOREM 1.2.— Let T" and .S be stopping times. Then:

Dif T =t,t €[0,00], then Fp_ = F_;

2) Fr_ C Fr;

3) the extended random variable T is .%1_-measurable;

4 if S < T, then F5_ C Fr_;

5)if Be Fg,then BN{S < T} € Fr_.
PROOF.— Assertion (1) follows directly from the definitions. Let us prove (2). Since
Fo C Fr,itisenough to check that AN{t < T} € Zrift € Ry and A € .%;. Take

s € Ry and show that AN {t < T < s} € %;. Indeed, this set is empty, if s < ¢; and
ifs >t then A € %, and {t <T < s} € Z.

To prove (3), it is enough to note that {t < T'} € Fr_ forevery t € R,.
Lett e Ry, A€ %, S <T.Then

B:=An{t< S} e %.
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Hence,
B=Bn{t<T}e Fr_,
and (4) follows.

Now we prove (5). Let B € .%5. We have

Bn{s<T}= |J (Bn{s<rin{r<T}),

reQ4

where the union is taken over a countable set of rational numbers . By the definition
of g, BN{S < r} € Z,.. Hence, BN{S < r}N{r < T} € Fp_. The claim
follows. =

PROPOSITION 1.6.— If T'is a stopping time and A € .Z,, then AN{T = 00} € Fr_.

PROOF.— It is easy to see that sets A with the indicated properties constitute a o-
algebra. Therefore, it is enough to check the assertion if A € %, t € R. But in this
case

Am{T:oo}:ﬁ(Am{t+n<T})e$2T,. O

n=1
LEMMA 1.1.— Let S and T be stopping times, S < T'and S < T on the set {0 < T <
oo}. Then Fg C Fp_.
PROOF.— Let A € Zg. It follows from the hypotheses that

A=(An{T=0})U(An{S<T}) U (AN{T = o0}).

Since s C Zr by theorem 1.1 (4), we have AN {T = 0} € %y C Fp_.
Next, AN {S < T} € Zr_ by theorem 1.2 (5). Finally, AN {T = oo} € Fr_ by
proposition 1.6.

THEOREM 1.3.—Let (7,) be a monotone sequence of stopping times and
T = lim,, T},:

1) if (T,,) is an increasing sequence, then

oo

=V 71,
n=1
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moreover, if {0 < T < oo} C {T,, < T'} for every n, then
oo
Fr- =\ Fr,.
n=1
2) if (T,) is a decreasing sequence, then
oo
Fr =) Zr.;
n=1

moreover, if {0 < T < oo} C {T < T,} for every n, then

[e.9]

Fr = () Zr,-.

n=1

PROOF.—

1) by theorem 1.2 (4), 7 D \/211 Fr, . To prove the converse inclusion,
it is enough to show that all elements that generate the o-algebra .%_ belong to
V", Zr, . This is obvious for sets from .%. Let A € .%;, t € R.. Then

Anft<T=JAn{t<T.}) € \ Fr,-,
n=1 n=1

because AN {t < T,} € Fr,_.
The second part of the assertion follows from the first one and lemma 1.1;

2) by theorem 1.1 (4), Fr C (\,—, Fr,.Let A € (\,—, Fr,.Fixt € R;. Then,

n=1

for every n, AN{T, <t} € F; by proposition 1.4, hence,

An{T <t} = G(Aﬂ{Tn<t})€fit.

n=1
Therefore, A € %1 by proposition 1.4.
It follows from the assumption {0 < 7' < oo} C {T < T}, } that {0 < T,, <

oo} C {T < T,}. Thus, the second part of the assertion follows from the first one
and lemma 1.1. O

REMARK 1.2.— Nowhere in this section was the completeness of the stochastic basis
used. Using the completeness, we can slightly weaken the assumptions in some
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statements. Thus, in theorems 1.1 (4) and 1.2 (4), we can assume that S < T a.s. In
lemma 1.1, it is enough to assume that S < 7T as. and S < T on the set
{0 < T < oo} as. (the latter means that P(S > T, 0 < T' < co) = 0). We can also
modify assumptions of theorem 1.3 in a corresponding way. All this can be proved
either directly or using the statement in the next exercise.

EXERCISE 1.11.— Let T be a stopping time and S be a mapping from (2 to [0, co] such
that {S # T} € % and P(S # T) = 0. Prove that S is a stopping time, Fs = Zr
and Fg_ = Fr_.

1.3. Measurable, progressively measurable, optional and predictable o-algebras

In this section, we introduce four o-algebras on the product space 2 x R;. We
will assume that a right-continuous stochastic basis B = (Q, %, F = (%} )er. , P) is
given.

DEFINITION 1.8.— The o-algebra of measurable sets on Q2 x R is the product .# ®
PB(Ry) of the o-algebra .# and the Borel o-algebra on R, . A stochastic process
X = (Xi)ter, with values in E is measurable if the mapping (w,t) ~ X (w,t) is
measurable as a mapping from (2 x Ry, . # ® Z(R.)) to (E,&).

Note that it is not necessary to assume that X is a stochastic process. Indeed, if a
mapping X : Q xR, — FE'is measurable, then the mapping w ~» X;(w) = X (w, t) is
Z-measurable for every t € R, i.e. X = (X;) is a stochastic process in accordance
with the definition in section 1.1. Here we use a well-known fact that if a function
of two variables is measurable with respect to the product of o-algebras, then it is
measurable in each variable, another one being fixed.

PROPOSITION 1.7.— Let X be a measurable stochastic process with values in £, H be
a nonnegative random variable. Then the mapping X g : 2 — E defined by Xy (w) =
X (w, H(w)), is a measurable mapping from (2, .%) to (E, &).

PROOF.— X7 is a composition of measurable mappings
w~ (w, H(w)) from (Q,.7) to (QxR;,.Z®ZR,))
and
(w,t) ~ X(w,t) from QxR ,Z®B[R.)) to (E,&). O
In what follows, the notation X 7 will be permanently used but in a wider context,
where H may also take the value +oc. In such a case, there appears to be a problem

in defining X (w, H(w)) if H(w) = co. We will use the following two solutions (for
simplicity, £ = R):
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1) We denote by Xplipg<oo}, the random variable which takes value
X (w, H(w)), if H(w) < oo, and value 0 if H(w) = oo. If a process X is measurable
and H is an extended random variable with values in [0, oc], then Xzl g oo} is a
random variable.

2) Let us assume additionally that X = Y or X = Y_, where Y is a cadlag
process, there exists a (maybe, infinite) limit lim;_, o, Y;(w) for almost all w. In this
case, in section 1.1, we defined random variables Y., and Y., _, equal to each other,
and it is natural to assign the same value to X .. Then Xy (w) = X(w, H(w)) is
defined (uniquely up to a null set) and is an extended random variable (if H is an
extended random variable with values in [0, co]).

The o-algebra of measurable sets is not connected with the filtration FF. It is natural
to distinguish processes, whose measurability in w or in (w, t) agrees with time stream.

DEFINITION 1.9.— A stochastic process X = (X;);cr, with values in E is called
adapted (relative to the filtration ) if, for every ¢ € R, the mapping w ~~ X;(w) is
measurable as a mapping from (€2, %) to (E, &).

If the stochastic basis is complete, if X is adapted and Y is a modification of X,
then Y is also adapted.

DEFINITION 1.10.— A stochastic process X = (X;);cr, with values in E is called
progressively measurable if, for every t € R, the mapping (w,s) ~ X(w,s) is
measurable as a mapping from (Q x [0,¢],.% @ £([0,t])) to (E,&). A set
B C Q xRy is called progressively measurable if its indicator is a progressively
measurable stochastic process, i.e., if, for every ¢t € R,

BN (Qx[0,1)) € Z ® B([0,1).

EXERCISE 1.12.— Show that a progressively measurable set is measurable. Show that
the family of all progressively measurable sets is a o-algebra. Show that a stochastic
process X = (X;)ecr, with values in £ is progressively measurable if and only if
the mapping (w,t) ~ X (w, t) is measurable as a mapping from Q2 x R, to E, where
Q x R, is equipped with the o-algebra of progressively measurable sets.

Thus, we have introduced the o-algebra of progressively measurable sets in
Q x R, which is contained in the o-algebra of measurable sets. Correspondingly, a
progressively measurable process is measurable. By the above mentioned fact (see
also theorem 1.4 below) a progressively measurable process is adapted. As is
indicated in the next exercise, a measurable adapted stochastic process may not be
progressively measurable.

EXERCISE 1.13.— Let a probability space (2, %, P) and a stochastic process Y be the
same as in example 1.2. Assume that, for every ¢t € R, the o-algebra .%#; consists of
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(Lebesgue measurable) sets of Lebesgue measure 0 or 1. Show that Y is measurable
and adapted, but is not progressively measurable.

REMARK 1.3.-If %, = %, the progressively measurable and the measurable o-
algebras coincide.

Using this remark, we can often obtain assertions concerning measurable
processes as special cases of assertions concerning progressively measurable
processes. For instance, proposition 1.7 is a corollary of theorem 1.4.

THEOREM 1.4.— Let X be a progressively measurable stochastic process and 1" be a
stopping time. Then the random variable X717} is Fr-measurable. If a limit
lim; oo X¢(w) exists for almost all w, then the random variable X is
Fr-measurable.

PROOF.— Under the assumptions of the second assertion, the random variable X,
is .#..-measurable (see exercise 1.5). So the second assertion follows from the first
assertion and proposition 1.6.

Fix t € R, and define two mappings:
w~ (w, t AT (w)) from Q to Qx |0,
and
(w,s) ~ Xs(w) from Qx[0,7] to R.

The first mapping is measurable if we take the o-algebra %#; on €2, and if Q x [0, ¢]
is equipped with the o-algebra .%; @ #([0,t]). Indeed, let A € %, B € #([0,t]).
Then {w: w € A, t ANT(w) € B} = AN{w:tAT(w) € B} € %, because
the random variable ¢ A T is .%#;-measurable. The second mapping is measurable as a

mapping from (2 x [0,t], . % @ B([0,t])) to (R, Z(R)) because X is progressively
measurable. Therefore, their composition

W~ Xt/\T(w)(w)

is measurable as a mapping from (2, %) to (R, B(R)), i.e. {Xiar € B} € % for
any Borel set B. Thus,

{Xrlireny € BYN{T <t} = {Xr € ByN{T < t}

The definition of the o-algebra .%#; requires confirmation that
C = {Xrl{rcec) € B} € Fuo. As we have proved, C N {T < n} € F,, hence,
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CN{T < oo} = U,(CN{T < n}) € Fw. It remains to note that the set
C N {T = oo} either is empty or coincides with {T = oo} € F,. O

THEOREM 1.5.— Let X be a right-continuous (or left-continuous) adapted stochastic
process. Then X is a progressively measurable process.

PROOF.— Let X be right-continuous. Fix ¢t € R.. For a natural n, put

o d Xeames if's €l(k—1)2 ", k27", k=1,...,2",
] X, if s = 0.

Then, for a Borel set B,

{(w,s): XI'(w) € B} = ({w: X{/(w) € B} x {0}) U

on
(U ({w: Xpy—n,(w) € B} x](k —1)27"¢, k:2‘”t])) € @ B([0,1]).
k=1

Since

lim X'(w) = X,(w) forallw e Q, s €]0,t],
n— oo

the mapping (w, s) ~» X (w, s) is also measurable as a mapping from (Q x [0, ], #; ®
#((0,1)) o (R, Z(R)).

The case of a left-continuous X is considered similarly (see also lemma 1.2).
O

DEFINITION 1.11.— The optional o-algebra on {2 x R is the smallest o-algebra, with
respect to which all adapted cadlag stochastic processes are measurable. The optional
o-algebra is denoted by . A stochastic process X = (X;)¢cr, with values in £ is
called optional if the mapping (w,t) ~» X(w,t) is measurable as a mapping from
(QxR4,0)t0 (E,&).

Earlier in the literature, the term “well measurable” was used instead of “optional”.

According to theorem 1.5, the optional o-algebra is contained in the o-algebra of
progressively measurable sets, hence, any optional stochastic process is progressively
measurable. The difference between these o-algebras is not essential (see exercise 1.40
in section 1.6), but it exists. An example of a progressively measurable set which is
not optional can be found, for example, in Chapter IV of [DEL 78].

Note also that, if the stochastic basis is complete, then every right-continuous
adapted process is optional (see Chapter IV, Theorem 65 [DEL 78]).
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LEMMA 1.2.—Let X be a left-continuous adapted stochastic process. Then X is
optional.

PROOF.— For a natural n, put

o0
XZI == Z XkQ—n ]]-{k27”<t<(k+1)27"} .
k=0

The process X™ is adapted and cadlag, hence, X" is optional. Since

lim X['(w) = Xi(w) forallw,t,

n— oo

the process X is also optional. O

To change “left” and “right” in the previous proof in order to approximate a
right-continuous adapted process by left-continuous adapted processes is not
possible: under the corresponding construction (see the proof of theorem 1.5), X"
are not adapted.

DEFINITION 1.12.— The predictable o-algebra on §2 x R is the smallest o-algebra,
with respect to which all adapted left-continuous stochastic processes are measurable.
The predictable o-algebra is denoted by 2. A stochastic process X = (X;);ecr, with
values in F is called predictable if the mapping (w,t) ~» X (w,t) is measurable as a
mapping from (2 x Ry, &) to (E,&).

According to lemma 1.2, the predictable o-algebra is included in the optional one.
As arule, they do not coincide.

EXERCISE 1.14.— Construct an example of an optional set which is not predictable.

HINT.— Take a discrete filtration and embed it into a continuous filtration as is
explained after definition 1.1.

PROPOSITION 1.8.— Let X be an adapted cadlag process. Then the process X_ is
predictable and AX is optional. The process X is predictable if and only if AX is
predictable.

PROOF.— It is enough to note that X _ is left-continuous and adapted. a

We successively introduced four o-algebras on 2 X R, each subsequent o-algebra
being included in the previous algebras. In what follows, we will deal mostly with
the optional and predictable o-algebras. In particular, our current aim is to provide
alternative descriptions of these two o-algebras.
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Stochastic intervals are sets in {2 x R, of one of the following forms:
[5, 7] = {(w,1) € @ x Ry: S(w) <t < T(w)},
[S, T = {(w.1) € @ x Ry: S(w) < t < T(w)},
[S,T] = {(w, ) € xRy : S(w) <t <T(w)},
15,71 = {(w,t) € @ x By : S(w) <t < T(w)},

where S and T are stopping times. A stochastic interval [T, T is denoted by [71'] and
called the graph of a stopping time 7. Let us emphasize that stochastic intervals are
subsets of {2 x R and are not subsets of £ x [0, cc]. In particular, our definition of
the graph of a stopping time differs from the definition of the graph of a mapping in
the theory of functions (if 7" takes value +00).

All stochastic intervals are optional sets. Moreover, the following statement takes
place.

LEMMA 1.3.—Let S and T be stopping times and £ be an .%g-measurable random
variable. Then the stochastic processes 15 77, {1 s, 7, {1ys,7[ are optional and the
stochastic process {15 7] is predictable.

PROOF.— Let £ = 1, B € %g. Then the process X := 1p1ls,7p is cadlag and,
moreover, adapted. Indeed,

{w: Xy(w) =1} =BnN{S<t<T}=(Bn{S<tHn{t<T} € F
forany ¢ € R... Therefore, X = {1 g [ is an optional process. In order to prove that
§1ps,p is an optional process for an arbitrary .7 s-measurable random variable &, it
is enough to represent ¢ as the limit of linear combinations of indicators of sets from
Fs.

That the process {15 7y is predictable is proved similarly.

Two remaining processes are optional due to the relations
s,y = lim Elpsria/nf, s rp = lm s n,7y- o

The next corollary follows also from the definition of the predictable o-algebra.

COROLLARY 1.1.—1If T is a stopping time, then the stochastic interval [0,77] is
predictable.
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PROOF.— The set [0, 77 is the complement of the set | T, oc], which is predictable by
lemma 1.3. O

DEFINITION 1.13.— Let X be a measurable stochastic process, T" be a stopping time.
The process X stopped at time T is denoted by X and defined by

X' = Xinr.

It follows from proposition 1.7 that this definition is correct.

PROPOSITION 1.9.—Let T be a stopping time and let X be a measurable
(respectively progressively measurable, respectively optional, respectively
predictable) stochastic process. Then the stopped process X7 is measurable
(respectively progressively measurable, respectively optional, respectively
predictable).

PROOF.— The measurable case reduces to the case of progressively measurable
processes according to remark 1.3. The claim in three other cases follows from the
identity

xT = XI[[[O’T]] + XT]I{T<O<>} ]l]]T,oo]]

and the predictability of the processes 1,7 and X717 <o0} 17,007 the first process
is predictable by corollary 1.1, and the predictability of the second process follows
from lemma 1.3 and theorem 1.4. o

DEFINITION 1.14.— The début of a set B C  x R is the mapping Dp:  — [0, <]
defined by
inf {t € Ry: (w,t) € B}, if this set is not empty,
DB(LU) = .
00, otherwise.

THEOREM 1.6.— Assume that the stochastic basis satisfies the usual conditions. Then
the début Dp of any progressively measurable set B is a stopping time.

It is essential for this theorem to be true that the stochastic basis satisfies the usual
conditions. If the stochastic basis is right-continuous but not complete, then we can
assert only that there exists a stopping time 7" such that the set {7 # Dp} is a subset
of a % -null set.

The proof of theorem 1.6 is based on the following (difficult) theorem from the
measure theory, which is given without proof and in a simplified form.
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THEOREM 1.7.— Let (2, #, P) be a complete probability space and K be a compact
metric space. Denote by 7 the projection from the space {2 x K onto (). If B is an
element of the product of o-algebras .# ® %(K), then the projection m(B) of the set
B on 2 belongs to .%.

In this theorem, the completeness of the probability space is also essential.

PROOF OF THEOREM 1.6.— It is obvious that, for any ¢ € R, the set {Dp < t}
is the projection on 2 of the set B; := B N [0, t[, which is considered as a subset
in the product space Q x [0, t]. Since B is progressively measurable, B; belongs to
the o-algebra .%#; @ ([0, t]). Since the probability space (€2, %, P|#,) is complete,
{Dp < t} € %, by theorem 1.7. By proposition 1.2, Dp is a stopping time. O

Theorem 1.6 will be repeatedly used in this book, in particular, if
B = {(w,t): X¢(w) € A}, where A is a Borel subset of the real line and X is a
progressively measurable process. In this case, the début D is also called the hitting
time of the set A by the process X; we will use the notation inf {¢: X; € A} for it.
There are special cases of hitting times, where the statement of theorem 1.6 can be
proved directly (and the completeness of the stochastic basis is not used in these
cases).

PROPOSITION 1.10.—

1) Let X be a right-continuous adapted stochastic process with values in R?, and
let A be an open subset of R%. Then T := inf {t: X; € A} is a stopping time.

2) Let X be a right-continuous adapted stochastic process with values in [0, oo],
whose all trajectories are nondecreasing, a € [0,00]. Then T := inf {¢t: X; > a}isa
stopping time.

PROOF.—
1) For any ¢ € (0, 00),
r<ty= |J {XedAles.

reQ, o<r<t

By proposition 1.2, T' is a stopping time.
2) The claim follows from the relation {T' < t} = {X; > a} € %, t e Ry. O

Yet another simple case of theorem 1.6 is left to the reader as an exercise.

EXERCISE 1.15.— Let X be a continuous adapted process with values in R¢ and A be
a closed subset of R%. Show that 7' := inf {¢: X; € A} is a stopping time.
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THEOREM 1.8.— The o-algebra & of optional sets is generated by stochastic intervals
of the form [0, T'[, where T is an arbitrary stopping time.

PROOF.— Denote by 0y, the o-algebra generated by stochastic intervals [0, 7],
where T’ is an arbitrary stopping time. By lemma 1.3, &; C &. To prove the converse
inclusion, it is enough to check that an adapted cadlag process X is &’;-measurable.

First, note that, if S and 7" are stopping times, then
[S,T[=[0,T[\[0,S] € 4.
Moreover, if B € %, then the process

Iplgsrp = Lsg, o

is 01-measurable because Sp is a stopping time by proposition 1.5. As in the proof
of lemma 1.3, we conclude that the process 1 g 7 is 1-measurable if & is an Fg-
measurable random variable.

For natural k, put S§ = 0 and define recursively

Sk =inf{t > Sk [X; — Xge| >27%}, n=0,1,....

Note that S¥, is the hitting time of the open set {z € R: |z| > 27*} by the
process X — X Sa. By induction, taking into account proposition 1.10 (1) and
proposition 1.9, we conclude that S* are stopping times for all n and k. It is clear that
the sequence {Sﬁ}n:O,l,Q,... is not decreasing and, moreover, its limit as n — oo is
equal to oo for all w, which follows easily from the fact that every trajectory X.(w) is
cadlag.

Define the process

Xk = Z Xsf ]]'ﬂSﬁ,Sﬁ+1[['

n=0

As we have proved above, X* is ¢’;-measurable for every k. It remains to note
that X = limy_,o X*. Indeed, by the definition of S¥_ |, we have |X — X*| < 27F
on the stochastic interval [S¥ Sk 41[» and the union of these intervals over n, as we
have proved, is 2 x R. O

The same construction is used in the proof of the next assertion, which will be
repeatedly used in the sequel.
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THEOREM 1.9.— Let X be an adapted cadlag process. There exists a sequence {7, }
of stopping times such that

{ax #0} = JIT]

and
[[Tn]]m[[Tm]] =g, m#n.

Any sequence with these properties is called a sequence of stopping times
exhausting jumps of the process X.

PROOF.— Define stopping times S¥ as in the proof of theorem 1.8. Put
BF = {SF < o, AXgr # 0}. By proposition 1.8 and theorem 1.4, BF ¢ F k.

Hence, by proposition 1.5, T := (S¥) ., is a stopping time. It is easy to see from

BY
the definition of S¥ that {AX # 0} = U, ,[T,]. Enumerate T% in a sequence
{T)}; we have {AX # 0} = Uo—,[7.]. Now put A; = Q and
A, = N AT, # T.}, n > 2. By theorem 1.1 (6), A, € P/, hence, by
proposition 1.5, T, := (7T}) . is a stopping time. Then, {7} is a required
sequence. O

The following theorem provides three characterizations of the predictable
o-algebra. The second characterization is the most useful: the corresponding family
of sets is a semiring in 2 x R .

THEOREM 1.10.— The predictable o-algebra &7 is generated by any one of the
following families of sets or processes:

1) B x {0}, B € %, and [0, T], where T is an arbitrary stopping time;

2) B x {0}, B € %y, and BX|s,t], s,t € Ry, s <t, B € %

3) continuous adapted stochastic processes.

PROOF.— Denote by £;, i = 1,2, 3, the o-algebra generated by the ith family. It is
clear that all sets and processes in these families are predictable, hence, &; C &2,
1=1,2,3.

Sets Bx]s,t], where s,t € Ry, s < t, B € %, can be represented as [0, ¢5] \
[0, spB], therefore, 225 C F7;.

Next, sets BX]s,t], where s,t € Ry, s < t, B € .F, are represented as {0 <
Y <t— s} whereY = (Yy)ucr, is a continuous adapted process given by Y, =
1g(u— s)*. Sets B x {0}, where B € %, are represented as {Y = 1}, where
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Y = (Yu)uer, is a continuous adapted process given by Y,, = 1p — u. Therefore,
Py C Ps.

Finally, let X be a left-continuous adapted process. For a natural n, put

oo
X" = X()]l{o} + Zszfn ]l]kgfrny(kle)an].
k=0

It is clear that X ™ are measurable with respect to &5, hence, X = lim,, o, X" is
also H5-measurable. Thus, &2 C . O

The next proposition is complementary to theorem 1.4. It will be used for a
characterization of predictable cadlag processes.

PROPOSITION 1.11.— Let X be a predictable stochastic process and T a stopping time.
Then the random variable X717« is #7_-measurable.

PROOF.— First, consider two special cases: X = ]lB]l{o}, B € %y, and
X =1pljy,st€R,, s <t,BEF,

In the first case, X7l 700} = Lpnr—oy and BN{T =0} € Fo C Fr_.

In the second case, X1l{r<o} = Lpn{s<r<t}> BN {s < T} € Fr_ by the
definition of the o-algebra Fp_, and {T < t} € Fr_ by theorem 1.2 (3).

Now let .77 be the set of predictable stochastic processes X such that the random
variable X71(7r.o) is Fr_-measurable. It is clear that 7 is a linear space,
contains constants and is stable under limits in converging sequences. It follows from
the monotone class theorem (theorem A.3) that .7 is the set of all predictable
stochastic processes. Indeed, let 4 be the set of processes X corresponding to two
cases considered above. Obviously, € is stable under multiplication and it has been
proved that € C .. By theorem 1.10, & = o{%'}. O

PROPOSITION 1.12.— Assume that the stochastic basis satisfies the usual conditions.
Then an evanescent measurable set is predictable.

PROOF.— If a set B is evanescent, then B C A x Ry, where A € .% and P(A) = 0,
hence A € %.

Put ¢ := {C x [t,0): C € F, t € Ry} Itis clear that ¥ is a m-system
generating the o-algebra of measurable sets. Now define
2 ={D € @ ABR:): DN (A xRy) € P} It is easy to see that Z is a
A-system and ¥ C 2. By theorem A.2 on 7-A-systems, we have 9 = .#% @ #B(R).
In particular, B € 2, hence, B € & by the definition of 2. a
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COROLLARY 1.2.— Assume that the stochastic basis satisfies the usual conditions.
Let X be a progressively measurable (respectively optional, respectively predictable)
stochastic process, and let Y be a measurable process indistinguishable with X . Then
Y is progressively measurable (respectively optional, respectively predictable).

EXERCISE 1.16.— Justify the inclusion 4 C & in the proof of proposition 1.12.

1.4. Predictable stopping times
Let us assume that a right-continuous stochastic basis B = (Q, #,F =
(Zt)ter, , P) is given.

DEFINITION 1.15.— A stopping time T is called predictable if the stochastic interval
[0, T is predictable.

REMARK 1.4.— It is not necessary to assume a priori in this definition that 7" is a
stopping time. Indeed, if T is a mapping from 2 to [0, co] such that the set B :=
{(w,t) € @ x R1: 0 <t < T(w)} is progressively measurable, then X := 1p is
an adapted process. Hence, {X; = 0} = {T' <t} € Z; foreveryt € R ,ie. Tisa
stopping time.

LEMMA 1.4.— If T' is a stopping time and ¢ > 0, then 7" + ¢ is a predictable stopping
time.

PROOF.- Indeed,

0.7+t[= |J [0,T+¢t~-1/n],
n>1/t

and the sets on the right are predictable by exercise 1.7 and corollary 1.1.

EXERCISE 1.17.— Construct an example of a stopping time, which is not predictable.

HINT.— Take a discrete filtration and embed it into a continuous one as is explained
after definition 1.1.

LEMMA 1.5.— Let T be a stopping time. The following statements are equivalent:
1) T is predictable;
2) [T, o] € &;
3 [T] € 2.
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PROOF.— Obviously, (1) and (2) are equivalent. Since the stochastic interval | T, oo[ is
predictable by lemma 1.3, it follows from the relations

[T] = [T,00[\]T,00[,  [T,00[=[TTU]T, 0]
that (2) and (3) are equivalent. O
The next statement complements theorem 1.10 (see also theorem 1.8).

THEOREM 1.11.— The o-algebra &2 of predictable sets is generated by stochastic
intervals of the form [0, T'[, where T is a predictable stopping time.

PROOF.— Denote by &7, the o-algebra generated by intervals [0, T[], where T is a
predictable stopping time. By definition, [0, T] € &2 for every predictable T, hence,
P C .

Let T" be an arbitrary stopping time. Then,
[0,7] = ([0, T +1/n[ € 2,
n=1

because T' + 1/n are predictable by lemma 1.4. Next, let B € %,. Put T'(w) = 0,
ifw ¢ B, and T(w) = oo, if w € B. Clearly, T is a stopping time, moreover, T is
predictable because [0, T = B x Ry € £2. Therefore,

B x {0} =[0,T[N[0] € <.
By theorem 1.10, we get the converse inclusion & C 4. O

PROPOSITION 1.13.— Let {7}, } be a sequence of predictable stopping times. Then
1) T := sup,, T}, is a predictable stopping time;
2)If S :=inf,, T), and |J,,{S = T5,} = €, then S is a predictable stopping time.

In particular, the class of predictable stopping times is stable with respect to a finite
number of maxima and minima. The infimum of a countable number of predictable
stopping times, in general, is not predictable. For example, let S' be a stopping time,
which is not predictable (see exercise 1.17). Put T,, = S + 1/n. Then all T,, are
predictable and S = inf,, T;,.

PROOF.— Under the assumptions of the proposition,
[0, 7] = [0, [, [0,S[ = ([0, Tul. i
n n

The following statement and the exercise after it complement proposition 1.5.
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PROPOSITION 1.14.— Let T be a predictable stopping time and A € .%p_. Then, T4
is a predictable stopping time.

PROOF.— Note that

TUAn = HrlLf TAn 5 TmAn = sup TAn B
n

Hence, by proposition 1.13, the family ¥ := {A € Fr: T, is predictable} is
closed under countable unions and intersections. Clearly, 2 € ¢. Let A € ¢ and
A¢:=Q\ A. Then

[[Ta TA[[ = [[Ta OO[[\ [[TAa OO[[ € ‘@7
therefore,
[0, Tac[ = (2 xR\ [T, Tuf € £,
ie. A°e 9.
Thus, ¢ is a o-algebra, and it is enough to verify that sets generating the o-algebra

Fr_,arein¥. Let A € %, then the indicator of A€ x [0, oo is an adapted continuous
process, S0

[0,Ta] = [0,T[U (A° x [0,00]) € 2,
hence, A € 4. Now let A = BN {t < T}, where B € %,. Then A € %, and
[0, Tc[ = [0, T[U (Ax]t, 00[) € 2.

Consequently, A° € 4, hence A € 4. O

EXERCISE 1.18.— Let T be a stopping time, A € Fr, T be a predictable stopping
time. Show that A € .Fp_.

HINT.— Use proposition 1.15 below.

The next statement extends theorem 1.1 (3) and theorem 1.2 (5).

PROPOSITION 1.15.— Let S be a predictable stopping time, B € .%s_, and let T be a
stopping time. Then BN{S < T} € Fr_.
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PROOF.— We have
BN{S<T}={Sp <T <oo}U(BN{T =oc}).

The second set on the right is in %7 _ by proposition 1.6. With regard to the first
set, the process X := Ig, o[ is predictable due to the previous proposition, hence,

{SB <T < OO} = {XT]]-{T<(X>} = 1} € Fp_
by proposition 1.11. |

The next statement follows from theorem 1.2 (5) and proposition 1.15.

COROLLARY 1.3.— Let S be a predictable stopping time, B € Fs_, T a stopping
time. Then BN {S =T} € Zp_.

The next assertion complements lemma 1.3.

LEMMA 1.6.— Let S be a predictable stopping time, Y an .#g_-measurable random
variable, T" a stopping time. Then, the process Y 15 77 is predictable.

PROOF.— As above, it is enough to consider the case Y = 1 g, where B € .#g_. Then
Ysry = Lsg, 1>

Sp is predictable by proposition 1.14, and
[SB,T] =1[0,T]\ [0,Sg] € Z. a

Any stopping time 7T is the début of a predictable set |T,00[. So additional
assumptions are needed for the début of a predictable set to be a predictable stopping
time.

PROPOSITION 1.16.— Assume that the stochastic basis B = (2, .7 ,F = (%#,)er, ,P)
is complete. Let A be a predictable set and let T := D 4 be its début. If [T] C A, then
T is a predictable stopping time.

PROOF.— By theorem 1.6, T is a stopping time. Therefore,
[T]=AN][0,T] € 2,
and the claim follows from lemma 1.5. O

Two special cases of proposition 1.16 can be proved without using theorem 1.6.
They are given as exercises.
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EXERCISE 1.19 (see proposition 1.10 (2)).— Let X be a right-continuous predictable
stochastic process with values in [0, oo], whose all trajectories are nondecreasing, a €
[0, 00]. Prove that T' := inf {¢: X; > a} is a predictable stopping time.

We should warn the reader against a possible mistake in a situation which is quite
typical in stochastic calculus (though it does not appear in this book). For example,
let @ = (a;) be a nonnegative progressively measurable (or predictable) stochastic
process and X; := fot asds, where the integral is taken pathwise. Put
T := inf {t: X; = 4oo}. Then the stopping time 7" may not be predictable. The
point is that, though X is left-continuous and, hence, predictable, its continuity and
right-continuity may fail at 7.

EXERCISE 1.20 (continuation of exercise 1.15).— Let X be a continuous adapted
stochastic process with values in R¢ and let A be a closed subset of R%. Prove that
T :=inf {t: X; € A} is a predictable stopping time.

From now on we will assume that the stochastic basis B = (Q,#,F =
(Z1)ter., , P) satisfies the usual conditions.

Let us formulate without proof a difficult theorem on sections. We will use it, in
particular, for an alternative description of predictable stopping times. It is supposed
that there is given a family o/ of stopping times, which satisfies the following
assumptions:

A1) o7 contains stopping times that are equal to 0 and +oo identically;

A2)ifT € &/, S =T as.,then S € &7,

A3)if S, T € &/, then SAT € &/ and SV T € o«

A4)if S, T € <7, then S{S<T} € o

A5)if {T,} is a nondecreasing sequence of stopping times from .7, then

sup,, T, € &7

THEOREM 1.12.— Let a family 2/ of stopping times satisfy assumptions (A1)—-(A5),
T be a o-algebra of subsets of the space 2 x R, which is generated by all stochastic
intervals [0, T'[, where T' € . Let 7 be the projection from the space 2 x R onto
Q. For any set A € .7 and for any € > 0, there is a stopping time 7' € .7 such that

[T]C A
and

P(r(A)) < P(T < c0) +e.
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Obviously, the set 7(A) coincides with the set {D4 < oo}, where D 4 is the début
of A.

If o/ is the set of all stopping times, then, clearly, it satisfies assumptions (A1)-
(A5) and, by theorem 1.8, 7 = &. So, the following theorem holds.

COROLLARY 1.4 (optional section theorem).— For any optional set A and any £ > 0,
there exists a stopping time 7" such that

[T]c A
and
P(m(A)) < P(T < ) +e.

An example of an optional set which does not admit a full section will be given in
exercise 1.34, i.e. corollary 1.4 is not valid with € = 0.

DEFINITION 1.16.— A sequence of stopping times {7}, } foretells a stopping time T
if {T},} is nondecreasing, T = lim,, T, and {T" > 0} C {T,, < T} for every n.
A stopping time T is called foretellable if there exists a sequence of stopping times
which foretells it.

EXERCISE 1.21.— Let T" be a foretellable stopping time, and S = T a.s. Show that S
is a foretellable stopping time.

LEMMA 1.7.— A foretellable stopping time is predictable.

PROOF.— Let a sequence of stopping times {75, } foretell a stopping time 7'. Then, by
lemma 1.3

Jo,7[=JI0,T0] € 2.

n

By proposition 1.14, O¢70y is a predictable stopping time and [0;7~01] € & by
lemma 1.5. Therefore,

[[OvT[[ = [[0{T>O}H U]]OvT[[ €. 0

EXERCISE 1.22.— Show that the o-algebra &2 of predictable sets is generated by
stochastic intervals of the form [0, T'[, where T is a foretellable stopping time.

HINT.— Use the same arguments as in the proof of theorem 1.11.
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EXERCISE 1.23.— Prove that proposition 1.13 is still valid if predictable stopping
times are replaced by foretellable stopping times.

HINTS FOR PROPOSITION 1.13 PART (2).— It is enough to consider the case where
{T,} is a decreasing sequence of foretellable stopping times and, for all w, T}, (w) =
S(w) for n large enough. Let p be a metric on [0, co], compatible with the natural

topology. For every n, we can find a sequence {Tn,p }p:LQ,_“ which foretells 7;, and
such that

P({w: 0o(Tp p(w), Tp(w)) > 27P}) < 27" FP),
Put

Sp = iI%f T p-

Prove that the sequence {5, } is nondecreasing and S, < S on the set {S > 0} for
every p. Prove that, for every p,

P{w: g(lizl)n Sp(w), S(w)) >27P}) <P{Hw: o(Typ(w), S(w)) >277})
< P{{w: o(Th p(w), Ta(w)) > 277}) <277,

Conclude that S = lim,, S, a.s.

EXERCISE 1.24.— Prove that proposition 1.14 is still valid if predictable stopping
times are replaced by foretellable stopping times.

HINTS.— In contrast to the proof of proposition 1.14, define
4 .= {A € Fr: T4 and Ty are foretellable}.

Prove that ¢ is a o-algebra, for which use exercise 1.23. Next, show that if a
sequence of stopping times {7}, } foretells a stopping time 7', then %7, C ¢, and use
the second assertion of theorem 1.3 (1).

EXERCISE 1.25.— Prove that the family <7 of all foretellable stopping times satisfies
assumptions (A1)—(AS).

HINT.— Use proposition 1.15 and the previous exercise to verify (A4) .

Now we are in a position to prove two important theorems.

THEOREM 1.13.— A stopping time is predictable if and only if it is foretellable.
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THEOREM 1.14 (predictable section theorem).— For any predictable set A and for any
€ > 0, there exists a predictable stopping time 7" such that

[T]C A
and
P(r(A)) < P(T < 00) +e.

PROOF OF THEOREMS 1.13 AND 1.14.— Theorem 1.14 with a foretellable (and not
only with a predictable) stopping time 7' follows from theorem 1.12 applied to the
family <7 of all foretellable stopping times. This is possible due to exercises 1.22
and 1.25.

To prove theorem 1.13, due to lemma 1.7, we need to check only the necessity.
Thus, let T' be a predictable stopping time. If 7' = oo a.s., then 7', obviously, is
foretellable, so we may suppose that P(T < oo) > 0. By lemma 1.5, the graph [T7]
is a predictable set. Therefore, by the predictable section theorem, there is a sequence
{T,,} of foretellable stopping times with the graphs containing in the graph of 7', and
such that

P(T < 00) < P(T), < o0) 4+ 1/n.

Replacing T;, by T4 A --- A T, we may assume that the sequence {7} is
decreasing. Therefore, lim,, 7;, is a foretellable stopping time by exercise 1.23. It
remains to note that 7" = lim,, T, a.s. O

The following statement is a typical application of the optional and predictable
section theorems.

THEOREM 1.15.— Let X and Y be optional (respectively predictable) nonnegative
or bounded stochastic processes. If for arbitrary (respectively arbitrary predictable)
stopping time 7',

EXT]]-{T<OC} = EYTII-{T<oo}7 [1.2]
then X and Y are indistinguishable.

PROOF.— We consider the case of predictable processes, the proof in the optional case
is similar. If the processes X and Y are not indistinguishable, then at least one of the
predictable sets

{(w,t): Xt(w) > Yi(w)} and {(w,t): Xt(w) < Yi(w)}

is not evanescent. Then it follows from theorem 1.14 that there exists a predictable
stopping time 7" such that the equality [1.2] does not hold. a
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REMARK 1.5.— In order to apply theorem 1.15, it is necessary to verify [1.2] for any
stopping time, finite or not (see remark 1.7).

1.5. Totally inaccessible stopping times

Unless otherwise stated, we shall assume that a stochastic basis B = (2, #,F =
(Z)ter. , P) satisfying the usual conditions is given.

DEFINITION 1.17.— A stopping time 7 is called fotally inaccessible if P(w: T(w) =
S(w) < 00) = 0 (i.e. the set [T] N [S] is evanescent) for any predictable stopping
time S.

EXERCISE 1.26.—Let a mapping T: @ — [0,00] be given; moreover,
{T = o0} € .F and P(T = o0) = 1. Show that T is a predictable and totally
inaccessible stopping time. Prove that there are no other stopping times that are
predictable and totally inaccessible simultaneously.

HINT.— Use lemma 1.7.

DEFINITION 1.18.— A stopping time 7' is called accessible if there exists a sequence
{T,} of predictable stopping times such that

7] < JITn] [1.3]
up to an evanescent set, i.e.,

P(U{w: Th(w) =T(w) < oo}) = P(T < c0).

Under these conditions, we say that the sequence {7, } embraces T.

REMARK 1.6.— Due to exercise 1.26, the words “up to an evanescent set” in
definition 1.18 can be omitted.

It is clear that a predictable stopping time is accessible. In exercise 1.33 we will
construct an example of an accessible stopping time 7', which is not predictable;
moreover, in this example, if {7}, } embraces T, then the inclusion in [1.3] is strict,
i.e. the set

(Jrma) 11



General Theory of Stochastic Processes 31

is not evanescent. It is useful to note, however, that, among all sequences {7}
embracing an attainable stopping time 7', we can find a sequence such that the set
U, [T.] is minimal up to an evanescent set (see exercise 1.41 in the next section).

We know that stochastic intervals [0, T'] generate the optional o-algebra, if T
runs over the class of all stopping times, and generate the predictable o-algebra, if 7'
runs over the class of all predictable stopping times. The o-algebra generated by
stochastic intervals [0, T, where T' runs over the class of all accessible stopping
times, is called the accessible o-algebra. It contains the predictable o-algebra, is
included into the optional one, and, in general, differs from both of them. The
importance of the accessible o-algebra is not as high as that of the optional and
predictable o-algebras.

The next theorem shows that every stopping time can be decomposed into
accessible and totally inaccessible parts.

THEOREM 1.16.— Let T be a stopping time. There exists a unique (up to a null set)
decomposition of the set {T" < oo} into two sets C' and B from the o-algebra . _
such that 7> is accessible and T is totally inaccessible. The stopping times 7~ and
T'p are called the accessible and totally inaccessible parts, respectively, of the stopping
time 7.

PROOF.— Denote by .7 the family of sets of the form

where {T,} is an arbitrary sequence of predictable stopping times. By corollary 1.3,
o/ C Fr_.lItis clear that & is stable under taking countable unions. Hence,

sup P(A)
Acdd

is attained at a set, say, C' from </ (in other words, C' = esssup{A: A € &}).

Obviously, the stopping time T is accessible. Put B = {T' < oo} \ C. Let S be a
predictable stopping time. Then

CU{Tp=S<o0}=CU{T=S<x}ec,
CO{TB:S<OO}=®,

therefore, P(Tp = S < oo0) = 0 by the definition of C. Thus, T is totally
inaccessible. The uniqueness of the decomposition is proved similarly. |
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Theorem 1.16 implies,

COROLLARY 1.5.— A stopping time 7' is accessible (respectively totally inaccessible)
if and only if

Plw: T(w) =S(w) <o0) =0
for every totally inaccessible (respectively accessible) stopping time S.

Theorem 1.16 helps us to prove the following theorem, which plays an important
role in the rest of the book.

THEOREM 1.17.— Let X be an adapted cadlag process. There exists a sequence {77, }
of stopping times such that every 7, is either predictable or totally inaccessible,

{ax #0} c JIT]

and
[LN[Tw] =2, m#n.

PROOE.— It follows from theorems 1.9 and 1.16, and remark 1.6, that there exists a
sequence {S,} of stopping times which meets the requirements of the theorem
except that the graphs are disjoint. As in the proof of theorem 1.9, put A; =  and
A, = ﬂz;ll{Sm #+ Spt,n =22, T, = (S,L)A”; every T, is a stopping time.
Moreover, if S, is totally inaccessible, then T, is totally inaccessible by the
definition. If \S,, is predictable, then A4,, € .Zg, _ by corollary 1.3, hence, T,, is
predictable by proposition 1.14. Therefore, {7}, } is a required sequence. a

THEOREM 1.18.— Let X be a predictable cadlag process. There exists a sequence
{T,} of predictable stopping times such that

(ax #0) = Jinl

and
[[Tn]] N HTm]] =d, m 7£ n.

PROOF.— By the previous theorem, there exists a sequence {S,} of stopping times
such that every .S, is either predictable or totally inaccessible,

{ax # 0y c JISn]
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and
[[Sn]] N [[S’ITLH =, m 7é n.

Put

s—axzon( U ).

n: S, predictable

By proposition 1.8, the process AX is predictable, hence, B € &. Let S be a
predictable stopping time such that [S] C B. Then

sic( U sad).

n: Sy, totally inaccessible

Hence, P(S = oo) = 1. By the predictable section theorem, B is an evanescent
set. Now put

T, = (Sn){Sn<oo,AXsn;£o}o

If S, is predictable, then T,, is predictable by propositions 1.11 and 1.14 (or
because [1,,] = [Sn] N {AX # 0} € ). If S, is totally inaccessible, then
[T.] € B. As it has been proved, P(T;,, < oo) = 0, Thus, T, is predictable by
exercise 1.26. So, {7, } is a required sequence. O

THEOREM 1.19.— A cadlag process X is predictable if and only if
P(S < oo, AXg # 0) = 0 for every totally inaccessible stopping time S and the
random variable X717 o} is Fr_-measurable for every predictable stopping
time 7.

PROOF.— The necessity follows from theorem 1.18 and proposition 1.11, so we prove
the sufficiency. The second part of the assumption implies, in particular, that X is
adapted. Let {7} be a sequence of stopping times, exhausting jumps of X. By
corollary 1.5, all T}, are accessible due to the first part of the assumptions. Using the
definition of accessible stopping times and taking into account remark 1.6, we can
find a sequence {.S,,} of predictable stopping times such that

{aX #0} < JISa]-

Replacing S;, by stopping times with the graphs [S,,] \ (Um<n[[5m]]), we may

assume that the graphs [S,,]] are pairwise disjoint. Then we have

X=X_+ Z AXSn]l{Sn<oo}]l[[S’n]]-

n=1
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Since X5, 1(s,<o0} I8 Fs, -measurable by the second part of the assumption
and X, 1(g, <0} i8 Fs5, -measurable by proposition 1.11, the stochastic process
AXg, s, <o} 1s,] is predictable by lemma 1.6 for every n. Therefore, the process
X is predictable. a

At the end of this section, we consider an example from the general theory of
stochastic processes in a series of exercises.

We start with a probability space (©2,.%7°, P) and a random variable S with values
in R, on it. For example, we can take Q = R,, .Z" = Z(R,), S(w) = w. For
simplicity, we will assume that P(S = 0) = 0.

Denote by .%# the completion of the o-algebra .#° with respect to P. The
continuation of P onto .% is denoted by the same letter.

Now define the o-algebra ﬂto, t € Ry, as the smallest o-algebra, with respect to
which the random variable S A t is measurable. In other words,

FY={S7YB): B e %},

where %Y is the o-algebra on R, generated by Borel subsets in [0, ¢[ and the atom
[t, 00l

EXERCISE 1.27.— Show that FO := (#));cr, is a filtration.
EXERCISE 1.28.— Show that % = % forevery t € R..

EXERCISE 1.29.— Show that, forevery t € R,
FP, ={S"Y(B): Be %},

where the o-algebra %) " is obtained from the o-algebra 2 by splitting the atom
[t, 00| into two atoms, {t} and ]¢,00[. Conclude that the filtration FY is not right-
continuous.

EXERCISE 1.30.— Show that S is a stopping time with respect to a filtration (¥, );cr,

if and only if ﬁ& C ¢, for every t € R, In particular, S is a stopping time with

respect to the filtration (F°) " = (%, 2 )icr, , but is not a stopping time relative to F.

Define a stochastic process X = (X;);er, by
Xi(w) = Lz s(w)}-

It is clear that X is a cadlag process. It is adapted with respect to some filtration
if and only if S is a stopping time with respect to this filtration. So the statement in
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the previous exercise can be reformulated as follows: (IFO)+ is the smallest filtration,
with respect to which X is adapted.

Let
N ={AeZF:P(A) =0}
Put, for every ¢t € R
Fi={AAB: Ae F) ,Be N}
According to exercises 1.2-1.4, the stochastic basis
B := (Q,%,F = (%)ier,,P) satisfies the usual conditions. Moreover, F is the
smallest (for given 0, %, and P) filtration such that the corresponding stochastic
basis satisfies the usual conditions and X is adapted.
All subsequent statements refer to the stochastic basis B. The first one says that

the o-algebra .%¢ coincides with the o-algebra generated by S as a random variable
up to a P-null set.

EXERCISE 1.31.— Prove that
oS}V AN =Fs_ =Fs=F.

In the next exercise, we give a simple characterization of all stopping times.
EXERCISE 1.32.— Show that a mapping T':  — [0,00] is a stopping time (with
respect to the filtration F) if and only if it is .%,,-measurable and there is a constant
r € [0, oo] such that, P-a.s.,
T>S on {S<r}

and
T=r on {S>r}

HINTS TO “ONLY IF”.— If P(T < S) > 0, then the set
U={ueRy:P(T<u<S) >0}

is not empty. For u € U, deduce from the condition {T" < u} € %, that {T < u} 2

{S > u} as.,ie. P(S > u, T > u) = 0. Conclude that P(T" < u < S) does not
increase in u on the set U and that inf U € U. Now take inf U as r.
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To solve the next exercises use exercise 1.32 and the fact that a predictable stopping
times is foretellable (theorem 1.13).

EXERCISE 1.33.— Assume that the random variable S has a discrete distribution.
Prove that S is an accessible stopping time. Moreover, if S does not equal a.s. a
constant, then S is not a predictable stopping time, and its graph is not represented as
a countable union of the graphs of predictable stopping times up to an evanescent set.

EXERCISE 1.34.— Assume that the random variable S has a continuous distribution.
Prove that S is a totally inaccessible stopping time. Show that the optional set A :=
]0, S does not admit a full section (see the remark after corollary 1.4).

EXERCISE 1.35.— Assume that the distribution of the random variable S has both
continuous and discrete components. Show that .S is neither an accessible, nor a totally
inaccessible stopping time. Find the accessible and totally inaccessible parts of .S.

1.6. Optional and predictable projections

Optional and predictable projections are a very useful and important tool in
stochastic calculus. However, in this book, we will use only predictable projections
and just to prove theorem 2.16, so this section may be skipped at first reading. Also,
note that here we use some results from the theory of martingales developed in
section 2.1.

Let a stochastic basis B = (Q,.%,F = (%)er,,P) satisfying the usual
conditions be given.

THEOREM 1.20.— Let X be a bounded measurable process. There exists a unique (up
to indistinguishability) bounded optional process Y such that

EX7l{r<oo} = EYrl{r<on) [1.4]

for every stopping time 7. This process is called the optional projection of X and
denoted by OX.

THEOREM 1.21.— Let X be a bounded measurable process. There exists a unique (up
to indistinguishability) bounded predictable process Z such that

EX71({1<o0y = B2l {100} [1.5]

for every predictable stopping time 7. This process is called the predictable projection
of X and denoted by II.X.
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PROOF OF THEOREM 1.21.— Note that if two bounded measurable processes X! and
X2 satisfy X' < X2 (up to an evanescent set) and have predictable projections ITX!
and T1X?2, then TIX! < T1X?2 (up to an evanescent set). Indeed, if the predictable
set B := {IIX LS [IX 2} is not evanescent, then, by theorem 1.14 on predictable
sections, there is a predictable stopping time 7" such that P(T" < co) > 0 and [T C
B. Obviously, this contradicts [1.5].

In particular, a predictable projection is unique up to indistinguishability if it exists.

Let 7 be the class of bounded measurable processes whose predictable projection
exists. It is clear that 7 is a linear space and contains constants. If 0 < X LIRS
. < X" < ... < C, then, as we have proved, 0 < Imx' < ... < IX"™ <
... < C everywhere, except on an evanescent set V. It follows from the theorem on
monotone convergence that 1(gxr, )\ lim, ILX™ is a predictable projection of the
process lim,, X™. Therefore, by theorem A.3 on monotone classes, it is sufficient to
prove the existence of predictable projections for processes

X =¢&1yg,q,
where ¢ is a bounded random variable and s € R,. Denote by M a bounded

martingale such that M; = E({|.7%;) a.s. forevery t € R, and put Z := M_1jy .
Then, using exercise 2.14 and theorem 2.4, we get

EX7lircooy = E{ljrcsy = EMoclipcs)y = EE(Moo| Fr- )1 {r<s)
=EMp_lir<sy = BEZr 110}
for every predictable stopping time 7'. Hence, Z = I1.X. O

PROOF OF THEOREM 1.20.— Completely similar to the proof of theorem 1.21, the
only differences are that we should use the theorem on optional sections
(corollary 1.4) instead of theorem 1.14 at the beginning of the proof, and we should
take Y := M1 4 at the end. |

EXERCISE 1.36.— Let X be a bounded measurable process. Show that there exist a
sequence {7}, } of stopping times and an evanescent set N such that

{ox #uxy c (Jirl)uw.

HINT.— Use theorem A.3 on monotone classes.

The following theorem establishes a connection between projections and
conditional expectations.
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THEOREM 1.22.— Let X be a bounded measurable process. Then, P-a.s.,
(OX)rliresey = E(X7l{rcoc}| 1) [1.6]
for every stopping time 7" and
(LX) 71 {r<o0y = E(Xrl{rcoo}|Fr-) (1.7
for every predictable stopping time 7.

In particular, OX is an optional modification of a (defined up to a modification)
stochastic process E(X;|.%;), and ILX is a predictable modification of a stochastic
process E(X;|.#_).

PROOF.— Let T be a stopping time and B € .Zp. Then, T is a stopping time by
proposition 1.5, and the equality [1.4], applied to Tz, yields

EXT]lBIL{T<<>o} = E(OX)T]IB]L{T<OO}.

This equality is equivalent to [1.6] because the random variable (OX )71 {7 <o0}
is .Zp-measurable by theorem 1.4. Similarly, let 7' be a predictable stopping time
and B € Zp_. Then T is a predictable stopping time by proposition 1.14, and the
equality [1.5] applied to Tz, yields

EXT]lB:u-{T<oo} = E(HX)T]IB]I{T<OO}.

This equality is equivalent to [1.7] because the random variable (TLX )71 (7«0}
is .#r_-measurable by proposition 1.11. a

The assertions in the next exercise are simple consequences of section theorems
(section 1.4).

EXERCISE 1.37.—Let X and Y be optional (respectively predictable) stochastic
processes and X = Y7 P-as. for every bounded (respectively bounded and
predictable) stopping time. Prove that X and Y are indistinguishable.

REMARK 1.7.— The equalities [1.6] and [1.7] characterize the optional and predictable
projections, respectively. Moreover, as exercise 1.37 shows, it is sufficient to check
them only for bounded stopping times. On the contrary, it is necessary to check the
equalities [1.4] and [1.5] for every stopping time, with finite or infinite values (see
remark 1.5 to theorem 1.15). Indeed, let £ be an .%,,-measurable bounded random
variable with E§ = 0 (but P({ = 0) < 1), X = £1[g 4 o0[- Then for every finite (or
finite P-a.s.) stopping time T’

EX71 (1<) = EXy = E€ = 0.
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However, Y = 0 is neither an optional projection nor a predictable projection
of X.

EXERCISE 1.38.— Justify the preceding assertion.

REMARK 1.8.— Optional and predictable projections can be defined for every
nonnegative measurable process X as the limit in n of the corresponding projections
of the processes X A n. In this case, projections may take value +oo. The equalities
[1.4]-[1.7] are still valid.

EXERCISE 1.39.—Let X, Y and Z be bounded measurable stochastic processes.
Moreover, assume that Y is optional and Z is predictable. Prove that

I(0X)=1IX, O(XY)=Y(0X), II(XZ)=Z{IX). [1.8]

The following states that the difference between the progressively measurable and
the optional o-algebras is rather small. Recall that, however, these o-algebras, in
general, do not coincide.

EXERCISE 1.40.— Let X be a progressively measurable stochastic process. Prove that
there exists an optional process Y such that X7 = Yr a.s. for every finite stopping
time 7. If X is the indicator of a set, then Y can be taken as an indicator function.

EXERCISE 1.41.— Let T' be an accessible stopping time and X = 17}. Show that, if
a sequence {7, } of predictable stopping times embraces 7', then

{nx > o} ¢ | JI7.1

up to an evanescent set, and there is an embracing sequence such that the equality
holds up to an evanescent set.



2

Martingales and Processes
with Finite Variation

2.1. Elements of the theory of martingales

This section outlines the basics of the theory of martingales with continuous time.
Most results were obtained by Doob and are stated without proof. Unproved
statements can be found in many textbooks on the theory of stochastic processes.

DEFINITION 2.1.— A stochastic process X = (X;)cr, on a stochastic basis
B = (Q,%,F = (%)er,, P) is called a martingale (respectively a submartingale,
respectively a supermartingale) if X is adapted, E|X;| < oo for all t € R and

X, = E(X¢| %) (respectively X < E(Xy|.%s),
respectively X > E(X¢|.%;)) P-a.s.

forall s,t € Ry, s < t.

It is clear that X is a submartingale if and only if —X is a supermartingale.
Therefore, statements related to submartingales admit equivalent formulation for
supermartingales and vice versa. We will usually formulate results only for
supermartingales. It is also clear that a process is a martingale if and only if it is both
a submartingale and a supermartingale.

EXERCISE 2.1.—Let a stochastic basis B = (2, 7,F = (%)icr,,P) and a
probability Q on (£2,.%) be given. Denote by P; and Q;, the restrictions of P and Q,
respectively onto the o-algebra .#;. Let Q; = Qf + Qf be the Lebesgue

decomposition of Q, into the absolutely continuous component Qf and the singular
component Q; relative to P,. Put Z, = dQ§/dP;, Z = (Z;)ier, . Show that Z is a
supermartingale. Show that, if Q; < P, for all t € R, then Z is a martingale.
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PROPOSITION 2.1.—Let X = (X;);cr, be a martingale, f: R — R be a convex
function and E|f(X;)| < oo for all t € Ry. Then f(X) = (f(X¢))er, is a
submartingale. In particular, if p > 1 and E|X;|P < oo for all ¢t € Ry, then
(| X¢[?)ter, is a submartingale.

PROPOSITION 2.2.—Let X = (X;);cr, be a submartingale, f: R — R a convex
increasing function, and E|f(X;)| < oo forall t € Ry. Then f(X) = (f(X¢))ter,
is a submartingale.

PROOF OF PROPOSITIONS 2.1 AND 2.2.— A real-valued convex function on the real
line is continuous and, hence, measurable. Thus, the process f(X) is adapted. The
integrability of random variables f(X;) is due to the assumptions. Applying Jensen’s
inequality for conditional expectations, we get, for all s < ¢,

E[f(X0)|Fs] = FIE(Xe] Fs)] = f(Xs)

(under the assumptions of proposition 2.1 the second inequality becomes an equality).
O

Processes with independent increments are also a source of examples of
martingales, sub- and supermartingales.

DEFINITION 2.2.— A stochastic process X = (X¢)¢cr, given on a probability space
(Q,.Z,P) is called a process with independent increments if, for every n € N and all

to,t1,...,tp suchthat 0 = tg <ty < --- < t,, the random variables X, , X;, — X,
.., X, — X4, _, are independent.

DEFINITION 2.3.— A stochastic process X = (Xt)t€R+ given on a stochastic basis
B = (Q,7,F = (%)ier,,P) is called a process with independent increments on
B if it is adapted relative to IF and, for every s,t € R4, s < ¢, the random variable
X; — X, and the o-algebra .%, are independent.

EXERCISE 2.2.—Let a stochastic process X = (X;)icr, be a process with
independent increments on a stochastic basis B. Show that X is a process with
independent increments in the sense of definition 2.2.

EXERCISE 2.3.— Let a stochastic process X = (X;);cr. given on a probability space
(Q, Z#, P) be a process with independent increments in the sense of definition 2.2. Put
Fi = 0{Xs, s < t}. Show that X is a process with independent increments on the
stochastic basis (2, .7, F = (#;)ecr,, P).

EXERCISE 2.4.—Let a stochastic process X = (X;)icr, be a process with
independent increments on a stochastic basis B = (2, .%#,F,P). Show that X is a
process with independent increments on the stochastic basis B? = (Q,.#" FP P)
(see exercise 1.3 for the notation).
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EXERCISE 2.5.—Let a stochastic process X = (X;)icr, be a process with
independent increments on a stochastic basis B = (2,7, F = (%)er,,P).
Assume that X is right-continuous in probability, i.e. for every t € R,

léiﬁ} P(| Xtrs — Xt| >€) =0 for every € > 0.

Show that X is a process with independent increments on the stochastic basis
Bt = (Q,.%,F",P) (see exercise 1.2 for the notation).

Exercises 2.3-2.5 show that if a stochastic process is a process with independent
increments in the sense of definition 2.2 and is right-continuous in probability, then
it is a process with independent increments on some stochastic basis satisfying the
usual conditions. In accordance with this, the phrase like “I¥ is a Wiener process on a
stochastic basis B” will always mean in the following that W is a Wiener process and,
at the same time, is a process with independent increments on the stochastic basis B.

EXERCISE 2.6.— Assume that X is a process with independent increments on a
stochastic basis B. Find necessary and sufficient conditions for X to be a martingale
(submartingale).

EXERCISE 2.7.—Let W = (Wt)t€R+ be a Wiener process on a stochastic basis
(2, 7,F,P). Put X; = exp(W,; — t/2). Show that W and X = (X;);cr, are
martingales.

EXERCISE 2.8.—Let W = (W;)cr, be a Wiener process on a probability space
(Q, F#,P). Give an example of a filtration F on (§2,.%) such that W is adapted to F
but is not a process with independent increments on the stochastic basis (Q, #,F, P).

The following exercise is part of the assertion of theorem 2.1 below.

EXERCISE 2.9.— Let X be a right-continuous supermartingale. Show that the function
t ~» EX, is right-continuous on R .

HINT.— Deduce from the supermartingale property that, for a given ¢t € R, the
sequence of random variables {X ., } is uniformly integrable. Apply Fatou’s

t+1/n
lemma to { Xyy1/y,}.

Definition 2.1 and the previous exercises do not require that the stochastic basis
satisfies the usual conditions. From now on, we will assume that the stochastic basis
B = (Q,.7,F = (%)cr, , P) satisfies the usual conditions.

Note that if a stochastic basis is complete, a modification of an adapted process is
again an adapted process. Thus, a modification of a martingale (respectively a
submartingale, respectively a supermartingale), is a martingale (respectively a
submartingale, respectively a supermartingale).
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THEOREM 2.1 (without proof).— A supermartingale X has a cadlag modification if
and only if the function ¢ ~» EXj, is right-continuous on R, . In particular, every
martingale has a cadlag modification.

ADDITION TO DEFINITION 2.1.— From now on, if not stated otherwise, we consider
only cadlag martingales, sub- and supermartingales.

THEOREM 2.2 (on convergence a.s.; without proof).— Let X be a supermartingale and

sup EX; < oo. [2.1]
teR4

Then with probability one, there exists a limit X, = lim;_, o, X; and E| X | <
0.

REMARK 2.1.— Quite often (especially if X is a martingale), theorem 2.2 is
formulated with the assumption

sup E|X;| < oo, [2.2]
teRL

which is more strong, at first sight, than [2.1]. In fact, if X is a supermartingale, [2.1]
and [2.2] are equivalent:

E|X:| = EX; +2EX, <EXo+2sup EX; .
tER+

EXERCISE 2.10.— Prove the second assertion in theorem 2.2.

In the next theorem necessary and sufficient conditions on a supermartingale X are
given, under which the supermartingale property remains valid for all stopping times.

DEFINITION 2.4.— A supermartingale X = (X;);er, is called a closed
supermartingale if there exists a random variable £ such that

El¢| < o0 and X: > E(¢|.%#) forallt € R,. [2.3]

A submartingale X = (X})¢er . is called a closed submartingale if — X is a closed
supermartingale.

REMARK 2.2.—If X is a closed supermartingale, then, obviously, condition [2.1] in
theorem 2.2 is satisfied. Therefore, for every stopping time 7', the random variable
X is well defined up to an evanescent set.
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THEOREM 2.3 (without proof).— Let X be a closed supermartingale. Then, for every
stopping times S and 7" such that S < T a.s., random variables Xg and X are
integrable and

Xg > E(Xﬂﬁ‘s) P-a.s. [2.4]

REMARK 2.3.— It is, indeed, necessary that a supermartingale is closed in order for
[2.4] to be true: take S = ¢, T = 00, £ = X.

REMARK 2.4.—Let X be a martingale. It follows from theorem 2.3 that we have
equality in [2.4] if (and only if) X is both a closed supermartingale and a closed
submartingale.

EXERCISE 2.11.— Let X be a martingale from exercise 2.7. Show that X is a closed
supermartingale but not a closed submartingale. Give an example of stopping times
S < T such that equality in [2.4] does not hold.

COROLLARY 2.1.— Let X be a supermartingale. Then, for every stopping times .S and
T such that S < T < N as. for some N € N, the random variables X g and X are
integrable and

XS 2 E(XT|yS) P-a.s. [25]
PROOF.— Let Y; := X;an. It is easy to see that ¥ = (Y,g)teR+ is a closed
supermartingale. It remains to note that Xg = Yg and X1 = Yr a.s. O

COROLLARY 2.2.— Let X be a supermartingale. Then, for every stopping time 7', the
stopped process X7 is a supermartingale.

PROOF.— That X7 is adapted follows, e.g., from theorem 1.4. Next, the random

variables X! = Xr,; are integrable by the previous corollary. Fix s and ¢,
0 < s < t. Define a supermartingale Y as in the previous proof with N = ¢. Then

Xrae =Yr =Yrlirsy + Yrlirgsy = YrvsLirssy + Yrlirgs.
The random variable YT]l{Tgs} is % ,-measurable, hence,
E(X7atlFs) = E(Yrvslirssy | Fs) + Yrliresy

= Lirs sy E(Yrys| Fs) + Yrlirgs

< ]]-{T>s}}/s + YTII-{Tgs} = Yrps = Xrnas,

where the inequality follows from theorem 2.3 applied to the process Y and stopping
times s and 1"V s. O
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COROLLARY 2.3.— Let X be a martingale. Then, for every stopping time 7', the
stopped process X 7' is a martingale.

DEFINITION 2.5.— A stochastic process X = (X;);er, is called uniformly integrable
if the family (X;)cr, is uniformly integrable. A progressively measurable stochastic
process X = (X;)icr, belongs to the class (D) if the family (X7), where 7' runs
over the class of all a.s. finite stopping times, is uniformly integrable. A progressively
measurable stochastic process X = (X;);er, belongs to the class (DL) if, for every
t € R, the process X (i.e. the process X stopped at the deterministic time ¢) belongs
to the class (D). In other words, a progressively measurable stochastic process X =
(Xt)ter, belongs to the class (DL) if, for every ¢t € Ry, the family (X7,;), where
T runs over the class of all stopping times, is uniformly integrable.

Let us introduce the following notation:

A is a class of all martingales,
M is a class of all uniformly integrable martingales.

By corollary 2.3, . is stable under stopping. By proposition A.1, if M € .# and
t € Ry, then Mt € ..

EXERCISE 2.12.— Prove that a martingale is uniformly integrable if and only if it is
both a closed supermartingale and a closed submartingale.

THEOREM 2.4.— Let M = (M;);er, € .#.Then random variables M, converge a.s.
and in L' to a random variable M, as t — oo, and for every stopping time T,

MT = E(Mm|yT) P-a.s. [26]
If T is a predictable stopping time, then P-a.s.
E(Mo|Zr-) = E(Mrp|F7r_) = Mp_ [2.7]
(recall that Mo, = M).
With regard to [2.7], let us note that if M € .# and T is not a predictable stopping
time, then E(M|-%7_) and Mr_ may not be connected. For example, it is possible
that EMp_ # EM, and that Mp_ is not even integrable. We give an example of

the first opportunity in the next exercise, and an example of the second opportunity is
postponed until section 2.5 (example 2.4).
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EXERCISE 2.13.— Construct an example of a martingale M € .# with My = 0 and a
stopping time T such that E|Mp_| < oo and EMp_ # 0.

HINT.— Take a process m; — At, where (m;) is a Poisson process with intensity A, and
stop it at the moment of the first jump of the Poisson process.

PROOF OF THEOREM 2.4.— It follows from theorem A.4 that M satisfies the
assumptions of Ttheorem 2.2. Hence, for almost all w, there is a limit
limy s 0o Mi(w) = Moo(w) and E| M| < oco. By theorem A.7, for every sequence
{t,} converging to oo, the sequence {M;, } converges to M in L'. Therefore, M;
converges in L' to M, as t — co. Passing to the limit as s — oo in the equality

/Mth:/MSdP, Be %, t<s,

B B

we get
/Mth:/ M., dP, Be.%,  ie,M;=EMy|F)P-as.
B B

Hence, the assumptions of theorem 2.3 are satisfied for both M and — M, and [2.6]
follows.

Now let T" be a predictable stopping time. Then, by theorem 1.13, there is a
sequence {5, } of stopping times, which is a foretelling sequence for 7T'. It follows
from [2.6] that, for every n, a.s.

E(Mw|%s,) = Ms,.

n

Let us pass to the limit as n — oo in this relation. By Lévy’s theorem for
martingales with discrete time, the left side a.s. converges to E(Moo‘ V., 9@”).
Moreover, \/,, s, = Fr_ by the second statement in theorem 1.3 (1). On the other
hand, we have S,, < T and S,, — T on the set {T" > 0}. Hence, on this set, the
variables Mg, converge to Mr_ (almost surely on the set {T" = co}). With regard to
the set {T' = 0}, we have S,, = 0 for all n on it, and, hence, Mg, = My = My_.
Thus, we have proved that the expressions on the left and on the right in [2.7]
coincide. That they are equal to the middle term follows from [2.6]. O

So far we have proved that every uniformly integrable martingale M is represented
in the form

M, = E(¢|7), [2.8]
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where E|£| < oo: take M as £. Conversely, let £ be an integrable random variable.
Define (up to a modification) a stochastic process M = (My):er . by [2.8]. Tt follows
from the tower property of conditional expectations that M is a martingale in the sense
of definition 2.1, while proposition A.1 implies the uniform integrability of M. By
theorem 2.1, M has a cadlag modification (which is unique up to indistinguishability
by proposition 1.1). For this modification, the statement of theorem 2.4 is true, and
My, = E(§|F ) P-as.

EXERCISE 2.14.— Prove the previous assertion.

The next statement follows from [2.6] and proposition A.1.

COROLLARY 2.4.— Every uniformly integrable martingale belongs to the class (D),
and every martingale belongs to the class (DL).

In section 2.2, we construct an example of a uniformly integrable supermartingale
that does not belong to the class (D).

COROLLARY 2.5.— The class ./ is stable under stopping.

Let us denote by LP(Z), 1 < p < oo, the space LP(Q, #,P|z,) of
(equivalence classes of P-a.s. equal) .%.,-measurable random variables £ with
E|£|P < oo. Let us also identify indistinguishable processes in .# . By theorem 2.4,
the mapping M ~» M., maps .# into L'(%,). It follows from [2.6] and
proposition 1.1 that this mapping is injective, and it is surjective by exercise 2.14. In
other words, this mapping is an isomorphism of linear spaces .# and L'(% ).

Define for p € [1,00)
MP = {M € M: E|My|" < o0}.

Here, as in the case of .#, we identify indistinguishable processes, i.e. we
interpret elements of the space .#Z” as equivalence classes of indistinguishable
stochastic processes. It is clear that .#' = .# and that the mapping
AMP > M ~~ My is an isomorphism of linear spaces .#? and LP(.%,). Thus, the
relation

1
1M ] = (EIMoc]?) "
supplies .#? with a norm which makes it a Banach space isomorphic to L?(.%,).

It follows from [2.6] and Jensen’s inequality for conditional expectations that .Z? is
stable under stopping.
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Let us formulate one more theorem belonging to Doob. To simplify the writing, we
introduce the following notation which will also be used later. Let X be a stochastic
process. Put

X; := sup |Xsl, X2 = sup | Xy|.

oo
0<s<t teR4
EXERCISE 2.15.— Let X be an adapted cadlag stochastic process. Show that X* =
(X7 )ter, is an adapted stochastic process with values in R, all trajectories of which
are right-continuous and nondecreasing, and X% (w) = lim;_,o, X; (w) for all w.

THEOREM 2.5 (without proof).— Let X be a nonnegative closed submartingale and
p € (1,00). Then

p

E(x%)’ < (ﬁ)p EXZ..

COROLLARY 2.6.— Let M be a martingale, t € Ry, p € (1,00). Then

Er;)" < (25) Bl

and

E(ML)" < (]%)p sup E[M,|”. 2.9]

teR L

PROOF.— To prove the first inequality, apply theorem 2.5 to the submartingale |M |
stopped at deterministic time ¢. The second inequality follows from the first inequality.
a

REMARK 2.5.— If M € .#, then we can apply theorem 2.5 directly to a submartingale
| M| which is itself closed in this case, and obtain

E(ML)" < (-2 EIMl
p—1
for every p > 1. The same inequality under the same assumptions is easy to deduce
from [2.9], because it follows from [2.6] and Jensen’s inequality for conditional
expectations that E|M;|P? < E|M|? for every ¢ € Ry. But if M is a martingale
satisfying only the assumptions of theorem 2.2, the above inequality may not be true.

EXERCISE 2.16.— Let M be the process X in exercises 2.7 and 2.11. Prove that
EMZ% = +oo and, for every p € (1,00), the left side of [2.9] equals +oco, while
E|Ms|? = 0.
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It is useful to introduce one more family of martingale spaces and reformulate
some of previous results in new terms.

For M € ./ and p € [1,00), put
HM||3fp = (E(M;o)p)l/in’ P = {M c.M: ||M||;fp < OO}

Again, let us identify indistinguishable stochastic processes in JZP. It is easy to
check that J#°P is a normed linear space. It is clear that 7P are stable under stopping,
HLCHP C HMPC Mforl <p<q<oo.

COROLLARY 2.7.— Let M be a martingale and p € (1, 00). The following statements
are equivalent:

1) sup,er, E[M;[P < oo;

2) the family {|M;|P};cr, is uniformly integrable;
)M e . #P

4 M e P,

Moreover, in this case,

p
[Ml.ar < [ M||ser < EHMHJ/ZP [2.10]

PROOF.— Implication (4)=-(3) has been mentioned above as obvious. If (3) holds,
then [2.6] and Jensen’s inequality for conditional expectations imply
|M? < E(|Mxo|P|#:) for every ¢t € Ry, and (2) follows from proposition A.1.
Implication (2)=-(1) follows from theorem A.4. Implication (1)=-(4) is proved in
corollary 2.6. The same corollary combined with remark 2.5 implies the second
inequality in [2.10], while the first inequality is evident. a

If p = 1, implications (4)=-(3)<(2)=-(1) in corollary 2.7 are clearly still valid.
The martingale X in exercises 2.7 and 2.11 satisfies (1) but does not satisfy the other
three statements. The inclusion 57! C . is, in general, strict; see example 2.4.

It follows from the completeness of the space .#? and inequality [2.10] that:
COROLLARY 2.8.— 5P is a Banach space for p € (1, 0).

The previous statement is true for p = 1 as well.

THEOREM 2.6.— 27! is a Banach space.
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PROOF.— Let {M"} be a Cauchy sequence in . It is enough to find a convergent
(in 5#') subsequence {M"*}.

Choose ny, for k = 1,2,... sothatn; < ng < --- < np < ... and |[M"™ —
M™|| 41 < 27% for n,m > ng. Let & := (M™+1 — M™)* _then E¢; < 27%. By
the monotone convergence theorem,

EY & =) E&4 <o
k=1 k=1

Therefore, the series Y-, &x(w) converges for almost all w. For these w, the
series

(M (w) = M{™ (w))
k=1

converges uniformly in ¢ € R, by the Weierstrass test, therefore, M;"* (w) converges
uniformly in ¢ € R.. Denote the limit of M;"* (w) by M;(w). For w such that the series
> &k(w) diverges, put My(w) = 0 for all ¢ € Ry. Since M; = limy_yoo M,*"
a.s., M; is #;-measurable, i.e. M = (Mt)t€R+ is an adapted stochastic process.
Since the right-continuity and the existence of left limits preserve under the uniform
convergence, M is a cadlag process. Next, obviously,

o0
(M — M™% < Zﬁi as.,
i=k

hence,
EM}, < o0 and E(M — M™)% — 0.
It remains to note that it follows from the previous relation that, for every ¢t € R,

random variables M;"* converge to M; in L'. Therefore, we can pass to the limit as
k — oo in both sides of

/M;““dP:/Mt”’CdP, s<t, Be.%,
B B
and to obtain
/MSdP:/Mth, s<t, Be.Z%,
B B

Thus, M is a martingale. O
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REMARK 2.6.— We can prove directly that J#7, p > 1, is complete. Indeed, let { M "}
be a Cauchy sequence in 7P, then it is a Cauchy sequence in .71 as well. We have
just proved that there is a subsequence { M™*} which converges in .#! to a martingale
M € #'. Moreover, (M — M™)*_ — 0 a.s. By Fatou’s lemma,

E(M:o)p < limkinfE((M”k)Zo)p < o0,

hence, M € sP. For a given ¢ > 0, let k be such that ||[M™ — M" || pr < ¢ if
[ > k. By Fatou’s lemma,

E(M - M™)%)" < lian inf E((M™ — M™)%)" < &P

We can introduce another useful norm on the space J#7, p > 1, which is
equivalent to || - ||s», and which is based on the Burkholder-Davis—Gundy
inequality.

2.2. Local martingales

Unless otherwise stated, we will assume that a stochastic basis B = (Q,.#,F =
(Z)ter. , P) satisfying the usual conditions is given.

DEFINITION 2.6.— A sequence {7, } of stopping times is called a localizing sequence
ifT(w) <...<Th(w) < ... forall wand lim,,_,« Ty (w) = 400 for almost all w.

The following technical assertion will be used repeatedly further.

LEMMA 2.1.—

) If {T,,} and {T),} are localizing sequences, then {T,, A T} is a localizing
sequence.

2) Let a localizing sequence {7,} and, for every n, localizing sequences
{T,p }pen be given. Then there exists a localizing sequence {S,, } such that, for every
n,

Sn < Tn A Tn,pn~

for some natural numbers p,,.

PROOF.— (1) is obvious. Let us prove (2).

For every n, choose p,, such that

P(T,p, <n)<27™
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This is possible because

lim P(T,,, <n)=0.

p—0o0

Now put, for every n,

S, =T, N ( inf Tm,pm)~

m>=n

By proposition 1.3, S, is a stopping time. The monotonicity of .S,, in n follows
from the monotonicity of 7;, and the definition of S,,. Next,

o0

P(S, < Th An) < P("igfn Tonpyy < 7) < Z P(Typ,, <m)

< i 2™ — g—ntl,

m=n

Thus,

o0

ZP(Sn<Tn/\n)<oo.

n=1

By the Borel-Cantelli lemma, for almost all w,
Sp(w) =2 Tp(w) An  forn = n(w). [2.11]
However, it follows from definition 2.6 that, for almost all w,

lim T, (w) An = +oo. [2.12]

n— oo

Combining [2.11] and [2.12], we get that, for almost all w,

lim S, (w) = +o0. O
n— oo
DEFINITION 2.7.— An adapted cadlag process M = (M;)icr, is called a local
martingale if there exists a localizing sequence {7}, } of stopping times such that, for
every n, we have M7~ € # i.e. the stopped process M " is a uniformly integrable
martingale. The class of all local martingales is denoted by ...
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If M € Mo and {T},} is alocalizing sequence of stopping times such that M €
M for every n, then we will say that {7, } is a localizing sequence for M € Ajoc. A
similar terminology will also be used for other “local classes” introduced later.

Our definition of a local martingale M always implies that E|My| < oo.
Sometimes in the literature, another definition of a local martingale is used, which
admits an arbitrary .%,-measurable random variable as the initial value M, namely,
a local martingale is understood as an adapted process M such that M — M is a
local martingale in the sense of our definition. It is easy to see that both definitions
coincide if E|Mp| < oo.

It is clear that # C Moc: take T, = n as a localizing sequence. It is also clear
that the class ., is stable under stopping: this follows from the definition and from
the fact that ./ is stable under stopping, see corollary 2.5. The class .#.. is a linear
space, use lemma 2.1 (1) to prove that the sum of two local martingales is a local
martingale.

Local martingales play a very significant role in the following, and a considerable
part of the book is devoted to studying their properties. In the end of the book, we
introduce the notion of a o-martingale, which also generalizes the notion of a
martingale and includes the notion of a local martingale. The importance of the
notion of a o-martingale became apparent in the second half of the 1990s in
connection with the first fundamental theorem of asset pricing.

THEOREM 2.7.— Let M be an adapted cadlag process. The following statements are
equivalent:

1) there exists a localizing sequence {7}, } such that MT» € J#" for every n;
2) M € Moc;
3) there exists a localizing sequence {7, } such that M~ € _# for every n;

4) there exists a localizing sequence {7},} such that M™» € .. for every n.

The assertion of the theorem can be written in a symbolic form as %’j&c = Moc =

]loc - ('%loc)loc-

PROOF.— Since #' C .M C M C Moe, implications (1)=(2)= (3)=(4) are
obvious.

We will first prove (4)=(1) under the assumption M € .#. Put
T,, := inf {¢t: |M;| > n}. By proposition 1.10, T}, is a stopping time. It is evident
that 7,, increase, and the regularity of trajectories of M implies lim,, T,, = oo, i.e.
{T,} is a localizing sequence. Finally, M~ € .# due to corollary 2.5, and

(MTH):O - M;n < n+ |MTn‘]]-{Tn<oo} S Lla
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ie. MTn € 1.

Now implication (4)=-(1) is proved by applying lemma 2.1 (2) two times. The
argument is standard and will often be replaced by the words “by localization”.
Assume first that M € .#,., then MT» € . for some localizing sequence {7, }.
We have just proved that, for every n, there exists a localizing sequence {71}, p}pen

such that (M T")T"”’ € 1 for all p. By lemma 2.1, there exists a localizing
sequence {5, } such that

Sp < T AT,

n

. s
for every n with some p,,. Then M*" = ((MT")T”"“”) € A" because ! is
stable under stopping.

Finally, let (4) hold, i.e. MT» € .#,. for a localizing sequence {T},}. It was
proved in the previous paragraph that, for every n, there exists a localizing sequence
{Ty.» }pen such that (MT+)™™* € 1 for all p. The rest of the proof is the same as
in the previous case. O

THEOREM 2.8.— Let M € #),.. It is necessary and sufficient for M € .4 that M
belongs to the class (D).

PROOF.— The necessity was mentioned in corollary 2.4, so we prove the sufficiency.
Let a local martingale M/ belong to the class (D). In particular, the family (M;)er,
is uniformly integrable and E|M;| < oo for all t. Hence, it is enough to check the
martingale property for M. Thus, let s < t, B € %, and let {T},} be a localizing
sequence for M € .#\.. Then:

/1ﬂﬁﬁcﬁ>=t/‘mﬁ%dp. [2.13]
B B

Note that lim,, oo MI" = lim,, ;oo Msa7, = Mj a.s., and the sequences { M1}
and { M} are uniformly integrable because M belongs to the class (D). So we can
pass to the limit as 7 — oo under the integral signs in [2.13] and to obtain

/Mssz/Mth. O
B B

In the proof, we can clearly see where the uniform integrability of values of M
at stopping times is used. In fact, there exist local martingales M that are uniformly
integrable but do not belong to the class (D) and, hence, are not martingales. An
example will be given soon.
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It follows from the following statement that a nonnegative local martingale is a
supermartingale. However, in contrast to the case of discrete time, see [SHI 99,
Chapter II, p. 100-101], it may not be a martingale, as we will see in the example
mentioned in the previous paragraph.

Let us say that an adapted cadlag process X = (X;)ier, is a local

supermartingale if there exists a localizing sequence {7}, } of stopping times such
that, for every n, the stopped process X ' is a supermartingale.

THEOREM 2.9.— A nonnegative local supermartingale is a supermartingale.

PROOF.— Let X > 0 and let X7~ be a supermartingale for every n, where {T},} is a
localizing sequence. Then, for every t € R,

EXinr, = EX[" <EXI" = EX,,
and, by Fatou’s lemma,

EX; <liminf EXyn7, < EXp < o0.

n—r oo

We obtain that the random variables X are integrable for every t.

Leta > 0and 0 < s < t. Obviously,

E(X/™ AalZF) <E(X/["

ﬁs) ANa < Xg" Aa,

which implies, for every B € %,

/(Xt/\Tn ANa)dP < / (Xsnr, A a)dP.
B B

By the dominated convergence theorem, we may pass to the limit as n — oo under
the integral sign in both sides of the previous inequality:

/B(Xt/\a)dp</(Xs/\a)dP.

B

It remains to pass to the limit under the integral sign in the last inequality as a — oo
(this is possible by the monotone or dominated convergence theorems):

/Xthg/XsdP.
B B

Thus, X is a supermartingale. a
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COROLLARY 2.9.— Let M be a nonnegative local martingale with My = 0. Then M
is indistinguishable with the identically zero process.

PROOF.— By theorem 2.9, M is a supermartingale. Hence, for every t € R,
0<EM; <EM,=0.
Since M, is nonnegative, we have M; = 0 a.s. It remains to use proposition 1.1. O
We will often refer later to the next theorem which describes jumps of local
martingales at predictable stopping times. The readers, not familiar with the

definition of conditional expectation for nonintegrable random variables, are
recommended to read section A.3 in the Appendix.

THEOREM 2.10.— Let M € .#j,. and T be a predictable stopping time. Then a.s.
E(|AMT‘1{T<W}‘ﬂT,) < oo and E(AMTR{T<W}‘ﬂT,) =0.

PROOF.— Let {T, } be a localizing sequence for M € .#,.. Applying theorem 2.4 to
the uniformly integrable martingale M ™, we get, for every n,

E[Mrnr,

< o0 and E (]\41“/\1“n

Fr_) = Mirar,)— as.on{T < oo}.

Since {T < T,,} € Fr_ by theorem 1.2 (5), we have B,, := {T < T,,} N{T <
oo} € Fr_, hence

E|[Mr|lp, <oo and E(Mp|Zr_)=Mr_ as.onB,.
It remains to note that U, B,, = {T < oo} a.s. and {T < oo} € Fr_. 0

In the discrete time, a local martingale is an adapted process for which the one-step
martingale property holds but the integrability may fail. It is a mistake to imagine that
in the case of continuous time the situation is similar. The following two examples
illustrate this point.

EXAMPLE 2.1.—Let W = (W;);cr, be a standard Wiener process on a complete
probability space (€2, .7, P). Assume that a filtration G = (%, );cr, on (£2,.7) is such
that the stochastic basis Bg := (2, %, G, P) satisfies the usual conditions and W is a
process with independent increments on Bg; see definition 2.3 and exercises 2.3-2.5).
Recall that X; = exp(W; — t/2) is a martingale on Bg according to exercise 2.7.

Now let us take a one-to-one increasing (and necessarily continuous) function

¥:[0,1) — [0, 00).
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Put 7, .= 9y fort € [0,1) and F; := F fort € [1,00), F := (F)ier, . It
is clear that FF is a filtration and the stochastic basis By := (2, %, F, P) satisfies the
usual conditions. Put also

~ X if ¢ 1
M, = Xvwy HEE(0.),
0, ift € [1,00).
The process M = (]\Z)teR . 1s adapted relative to I, and its trajectories are
continuous everywhere except possibly the point ¢ = 1, where they are

right-continuous. Moreover, it follows from the law of iterated logarithm for the
Wiener process that

tlgrolo(Wt —t/2) = —00 as.,
hence the set N := {w: limsup,_,., X; > 0} has zero measure. Now define, for

all ¢,

M;(w), ifwé N,

M =
() {0, ifwe N.

The process M = (M;);cr, is continuous, nonnegative, adapted relative to I
(because the basis By is complete). Next, for 0 < s <t < 1,
EM; = EXyu =EXo=1
and
E(M|Fs) = B(Xy )| Pus)) = Xy(s) = Ms,
and, fort > 1,
Mt = 0
Hence, M is a supermartingale on By, which has the martingale property on the
intervals [0,1) and [1,00), but this property is “broken” at ¢ = 1. We assert that,
additionally, M is a local martingale.
Indeed, put 7;, := inf {¢: M; > n}. By proposition 1.10 (1), T, is a stopping time
on By. It is obvious that T}, are increasing. Since all trajectories of M are bounded,

for every w, T;,(w) = oo for n large enough. Thus, {7}, } is a localizing sequence.

Now we check that M7 is a uniformly integrable martingale on By for every n.
Since MT* is a supermartingale on B, see Corollary 2.2, it is enough to show that
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EMr, = EMy = 1, see Exercise 2.17 below. Let S,, := inf {¢: X; > n}. Then S,
is a stopping time on Bg and clearly ¢(T},) = S, a.s., where 1)(c0) := oo. Since
0 < X < n, the stopped process X =, being a martingale on Bg, is a uniformly
integrable martingale on Bg. Hence,

and

EMy, =EXg, =1.

EXERCISE 2.17.— Let a supermartingale X satisfy the assumptions of theorem 2.3.
Show that X € ./ if and only if EX ., = EXj,.

EXERCISE 2.18.— Using example 2.1, construct an example of a local martingale
M = (M;);er, , such that My = M; = 0and P(M; =0) =0,0 <t < 1.

In example 2.1, M = (M;);cr, is a nonnegative continuous local martingale,
whose expectation EM; as a function of ¢ has a jump at ¢ = 1. In the following
classical example, we construct a nonnegative continuous local martingale
M = (M;)¢er, , whose expectation EM; is continuous in ¢ € [0, oo] (which implies
that M is uniformly integrable) but strictly decreasing in ¢. Thus, a supermartingale
M = (M;)ier, is uniformly integrable but does not belong to the class (D) and
even to the class (DL).

EXERCISE 2.19.—Let X = (X;);cr, be a nonnegative supermartingale. Assume
that the function ¢ ~» EX} is continuous on [0, oo] (note that the random variable
X is defined and integrable by theorem 2.2). Prove that the process X is uniformly
integrable. The continuity of X is not assumed.

EXAMPLE 2.2.-Let (Q,.%,P) be a complete probability space with a
three-dimensional (3D) Brownian motion W = (W' W2 W3) on it. This means
that W is a stochastic process with values in R®, whose components
W= (W})ier +» 1 =1,2,3, are independent standard Wiener processes. A filtration
F = (Z%i)ier, on (Q,.7) is chosen in such a way that the stochastic basis
B := (Q, #,F,P) satisfies the usual conditions, W is adapted relative to I, and, for
any 0 < s < t, the random vector W; — W, and the o-algebra .%; are independent.
Put X; = W; + (0,0,1). The process M = (M;)icr, that we want to construct is
given by

1
Mt = T t€R+, [214]
12X
where || - || is the Euclidean norm in R3. However, we cannot do it directly because

the denominator in [2.14] may vanish.
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So let us first define
T, :=inf {¢t: || X¢]| < 1/n}.

By proposition 1.10, T;, is a stopping time for every n. Obviously, the sequence
T}, increases in n. Define the process M"™ = (M;*)icr, by

1
MtnziT, t€R+.
[ X

Itis clear that M™ is a continuous adapted nonnegative stochastic process bounded
from above by n. The key fact is that M/ ™ is a local martingale and, hence, a uniformly
integrable martingale. The proof of this fact is based on Itd’s formula, see theorem 3.10
and exercise 3.9 in section 3.2, and what is essential is that the function x ~ 1/||x||
is harmonic on R3 \ {0}.

Since X is continuous, we have Mﬁ = n on the set {T,, < co}. Next, EM%W =
EM{ = 1 by theorem 2.4, hence,

1=EMp, 2 EM} 1i1, <00} = nP(T,, < o0),

hence P(T,, < oo) < 1/n. Therefore, P(N, {7}, < oo}) = 0 and, since T;, are
increasing,

lim7,, = o0 P-as.

Now we can define M by [2.14] for w such that lim,, T}, (w) = oo; otherwise, put
M;(w) = 1forall ¢. It is clear that M is a continuous adapted process. Since M= and
M™ are indistinguishable, we have M Tn ¢ i for every n. Therefore, M € #joc. In
particular, M is a supermartingale by theorem 2.9.

Now let us compute EM;. The vector X; has a Gaussian distribution with the
density

1 2
ft(X) = We 7 |l oll , X= (Il,l‘Q,l‘g), Xg = (0,0,1)

Hence,

+00 +00 +0o

EM, — / / / ﬁft(x)daxldajgdmg,.

—00 —0O0 —0O0



Martingales and Processes with Finite Variation

61

Passing to the spherical coordinates

x1 =rsinpcos?d, xy=rsinpsind, x3=rcosp,

0<r<oo, 0<p<m, 0<Y<2n,

we get

+o0 +00 00
—e well=o0ll* 4oy dy das

m/ | |

—00 —00 —O0

EM, =

+oo ™ 27

/// SeT [+ sin? o rcos ip-1) ]rzsingpdﬂdgodr
\/ 2ﬂ't

™
— / Niwsmgodgodr
0

:\/Wo/re

1

27‘ rz
2
: / _2_1 / : .
( ) 0

-1

- [

+oo
1 _(r=1)? _(rtn?
= (e 2t — e 2t ) d'r
it
0

V2t

—+oo —+oo

1 2 .2
= —_— e 'z d — ez d
m( / Y / y)

-1/vt +1/Vt
= ®(1/Vt) — ®(~1/V),

where ®(+) is the distribution function of the standard normal law. Thus, the function
t ~» EM, is strictly decreasing and continuous on [0, 00), and limy o, EM; = 0. We
conclude that M is not a martingale. Note also that, by theorem 2.2, there exists a.s. a
limit limyyoo My = My, and EM, < 0 by Fatou’s lemma, that is, M., = 0 a.s. By

exercise 2.19, the process M is uniformly integrable.
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We can also prove the uniform integrability in a direct way using the
Vallée—Poussin criterion. Indeed, similarly to the previous computations,

EM? — / / / Lol g dey das
v/ (@2rt)3 [[]|?
/// —e —arlx=xol® go) day dus
«/ 27Tt ||X

x| >1/2
e & /// LR
XL XL X
\/727# [ —
lxll<1/2
. 1/2 o 2n
= ///1 2gin o dd doo d
— 7" S1n T
m gzt AR
0
_ 1
e 8t
§2+27rsup7<oo,

>0 1/ (27t)3

1.€.,

sup EM? < oo. [2.15]
tERy

Thus, M is a continuous local martingale satisfying [2.15], however, M ¢ ¢ 2
because M is not a martingale. So this example also shows that it is not enough to
assume in corollary 2.7 that M is a local martingale.

EXERCISE 2.20.— Show that P(T;, < co) = 1/n in example 2.2.

2.3. Increasing processes and processes with finite variation

We will assume that a stochastic basis B = (Q,.7,F = (%;)cr, , P) satisfying
the usual conditions is given.

DEFINITION 2.8.— An adapted stochastic process A = (A;)ier, is called an
increasing process if, for all w, trajectories ¢t ~~ A;(w) are right-continuous, start
from 0, i.e. Agp(w) = 0, and are nondecreasing, i.e. As(w) < Ai(w) for every

s,t € Ry, s < t. An adapted process A = (Ay)ier, is called a process with finite
variation if, for all w, trajectories ¢ ~ A;(w) are right-continuous, start from 0, and
have a finite variation on [0, ¢] for every ¢ € R.. The class of all increasing processes
is denoted by ¥, and the class of all processes with finite variation is denoted by ¥’
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EXERCISE 2.21.— Let A € ¥. Show that the following conditions are equivalent:
1) there is a process B € ¥ indistinguishable from A;
2) for almost all w, trajectories ¢ ~» A;(w) are nondecreasing;

3) As < Aias.forall s,t e Ry, s <t.

Increasing processes and processes with finite variation relative to the filtration
F = F will be called increasing processes in the wide sense and processes with
finite variation in the wide sense, respectively. In other words, to define corresponding
processes in the wide sense, we should omit the word “adapted” in definition 2.8.

Trajectories of any process with finite variation, besides being right-continuous,
have finite left limits at every point in (0, 00). Thus, processes in ¥ are optional.

If A S ¥+, then, for all w, there exists a limit
Ao (w) = limypoo Ar(w) € [0, +00].

It is clear that #* is a convex cone, ¥ is a linear space, ¥ T and ¥ are stable
under stopping. If a process A is such that AT™» € 7T (respectively A™» € ¥) for
all n for some localizing sequence {7, }, then A is indistinguishable with a process in
¥ T (respectively in ¥'). This explains why we do not introduce corresponding local
classes.

Let A € ¥. The variation of a trajectory s ~ A,(w) on the interval [0, ¢] is denoted
by Var (A),(w). It follows from the next proposition that Var (4) = (Var (4)¢).er,
is a stochastic process (even if A is a process with finite variation in the wide sense
only). All relations in this proposition are understood to hold for all trajectories.

PROPOSITION 2.3.— Let A € ¥. There is a unique pair (B, C') of processes B, C €
¥ such that

A=B-C, Var(Ad)=B+C.

In particular, Var(4) € ¥*. If A is predictable, B, C' and Var (A) are
predictable.

PROOF.- Put

_ Var(A)+ A
= —>—

B [2.16]
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see [A.8]. The required pathwise properties of processes B, C' and Var (A) follow
from results given in Appendix A.4. Next, by [A.7], forevery t € R,

o
Var (A), = lim. > Apiz-n — Ag—yiz—n
=1

b

which implies that Var (A) is adapted. Hence, each of the processes B, C and Var (A)
belongs to # *. Finally, let A be predictable. Since

AVar (A) = |AA],

processes A Var (A) and Var (A) are predictable by proposition 1.8. Hence, B and C
are also predictable in view of [2.16]. O

In particular, it follows from this proposition that every process in ¥ can be
represented as the difference of two increasing processes from ¥ . The converse is,
of course, also true. Thus, ¥ = ¥+ — ¥+,

DEFINITION 2.9.— A process A € ¥ is called purely discontinuous, if, for all w and
teRy,

Aw) = Y AA ().

0<s<t

The class of all purely discontinuous processes with finite variation is denoted by
v,

In the next exercise, the equality is understood to hold for all trajectories.

EXERCISE 2.22.— Let A € ¥. Show that there are a continuous process B € ¥ and a
purely discontinuous process C' € #¢ such that A = B + C.

Trajectories of a process A € 7 have finite variation on every finite interval
(unlike, say, a Wiener process). Consequently, we can define an “integral process”
fot H,dAs; as the pathwise Lebesgue—Stieltjes integral for a wide class of
processes H.

Let A be a process with finite variation in the wide sense and H be a measurable
stochastic process. Then, for every w, the trajectory ¢t ~ H,;(w) is a measurable (with
respect to the Borel o-algebra (R .)) function. Therefore, we can define

OjHS(w) dAs(w), ifbf |Hs(w)| dVar (A)s(w) < oo,

Yi(w) := [2.17]

400, otherwise.
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LEMMA 2.2.— Let A be a process with finite variation in the wide sense and H be a
measurable stochastic process. Then, for every ¢, the mapping w ~~ Y;(w), given by
[2.17], is a random variable (with values in (—oo, +0o0]). If, moreover, A € ¥ and H
is progressively measurable, then Y = (Y})cr, is an adapted stochastic process with
values in (—o0, +00].

PROOF.— It is enough to prove only the second assertion, because the first assertion
follows from it if we put .%; = %. Thus, let A € ¥. Fix t € R, and introduce
the class %7 of bounded functions H (w, s) on 2 x [0, ¢], which are measurable with
respect to the o-algebra .%; ® %([0,t]) and such that the integral (taking finite values
for every w)

¢
/stdA w),
0

is #;-measurable. Recall that this integral (and the first integral in [2.17] assuming
the second integral is finite) is defined for every w as the difference of the
Lebesgue-Stieltjes integrals of the function s ~» Hg(w) with respect to the
Lebesgue-Stieltjes measures corresponding to the increasing functions s ~» Bg(w)
and s ~» Cs(w), where B and C are from proposition 2.3. It is easy to see that ¢
satisfies the assumptions of theorem A.3 on monotone classes. However, obviously,
S contains the family ¢’ of functions H of the form H = 1 py oy of H = Lpyju,0s
where D € %#;, 0 < u < v < t. Since the family % generates the o-algebra
F: @ HA(]0,t]), by the monotone class theorem, # consists of all bounded
F: @ B([0,t])-measurable functions.

Let a process H in the statement of the lemma be nonnegative and A € ¥ 7.
Apply the statement that was just proved to the functions H A n and pass to the limit
asn — oQ. The monotone convergence theorem shows that Y; are .%;-measurable
(note that Y7 (w fo (w) for all w in this case).

In the general case, we now have that four integrals fot H} (w)dBs(w),
fot H; (w)dBs(w), fot H} (w)dCs(w), fot H; (w)dCs(w) are F-measurable. The
claim follows easily. a

THEOREM 2.11.— Let A be a process with finite variation in the wide sense and H be
a measurable stochastic process. Assume that

{0 / H.(0)]aVar (4), () < ) =1 2.18)
0
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forevery t € Ry. Define Y = (Y;);cr, asin [2.17]. There exists a process with finite
variation in the wide sense and indistinguishable with Y. Any such process is denoted
by H - A= (H - Ay)ier, - Processes

Var (H - A) and |H|-Var(A) are indistinguishable. [2.19]
Processes
A(H-A) and HAA areindistinguishable. [2.20]

If A € ¥ and H is progressively measurable, then H - A € ¥ If A and H are
predictable, then H - A is predictable.

REMARK 2.7.— The set in [2.18] is in .% by lemma 2.2.

PROOF.— Put
D= r_]{w O/|Hs<w>|dVar<A>s<w> <oof

and H = H1pxr, . Define a process Y as in [2.17] with H instead of H. Then
Y = Y1pxr, . By the assumptions, P(D) = 1, hence, Y is indistinguishable with Y".
Moreover,

/\ffs(w)mvar (A)s(w) < oo
0
and
Y(w) = [ Hy(w)dA,(w)
/

for all w and all t. Consequently, we can take Y as H - A. Indeed, Y is a stochastic
process by lemma 2.2. The required properties of trajectories of Y and relation [2.19]
follow from properties of the Lebesgue—Stieltjes integral; see Appendix A.4. Further,

AY = HAA, [2.21]

thus, [2.20] holds for this and, therefore, for every version of the process H - A.
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Note that the process 1pxr. is predictable. Indeed, it has continuous trajectories

and it is adapted due to the completeness of the filtration. Therefore, the process H is
progressively measurable (respectively predictable), when H is progressively
measurable (respectively predictable). Hence, when A € 7" and H is progressively
measurable, YV is adapted by lemma 2.2, where any version of H - A is adapted due
to the completeness of the stochastic basis, i.e. H- A € V.

Finally, let A and H be predictable. Then Y is predictable in view of [2.21] and
proposition 1.8. An arbitrary version of H - A is predictable by corollary 1.2. O

Thus, under the assumptions of theorem 2.11, given a pair (H, A) of processes, we
have constructed an integral process H - A. It is easy to see that this operation deals,
essentially, with equivalence classes of indistinguishable stochastic processes: if H
and H' are indistinguishable measurable processes, A and A’ are indistinguishable
processes with finite variation in the wide sense, H and A satisfy the assumptions of
theorem 2.11, then H' and A’ do the same and any version of the process H' - A’ is a
version of the process H - A and vice versa.

In the next chapter, we will introduce a similar notation for stochastic integrals.

When it may cause confusion, we will use the notation H A for the Lebesgue—
Stieltjes integrals.

Let A be an increasing process in_the wide sense and H be a nonnegative
measurable process. Then the version Y of the process H - A, constructed in the
proof of theorem 2.11, is an increasing process in the wide sense. Therefore, for
every version of H - A, there exists, a.s., a limit limyoo i - A = H - Ao, and, for
almost all w,

H Ay(w) = /Hs(w) dAg(w), [2.22]
0

where the integral on the right is understood as the Lebesgue—Stieltjes integral.

DEFINITION 2.10.— A stochastic process H is called locally bounded if there exists a
localizing sequence {7, } of stopping times such that the process H 1y 7, ] is bounded
(uniformly in ¢ and w) for every n.

EXERCISE 2.23.— Let a process H be measurable and locally bounded, and let A be
a process with finite variation in the wide sense. Show that [2.18] holds for every
teR,.

In the following, we are especially interested in predictable integrands. It is
convenient to introduce a corresponding notation.
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DEFINITION 2.11.—Let A € ¥. Then Ly, (A) denotes the class of all predictable
processes H satisfying [2.18] for every ¢t € R,.

EXERCISE 2.24.— Let H be a measurable process indistinguishable with zero process.
Show that H € Ly, (A) forevery A € 7.

HINT.— Use proposition 1.12.

For ease of reference, we state the following theorem. All equalities are understood
up to indistinguishability. Statements that have not been proved before are left to the
reader as an exercise.

THEOREM 2.12.—-Let A € ¥ and H € Ly,,(A). Then H - A € ¥ and the following
statements hold:

)if BE ¥, H € Lya(B)and o, B € R, then H € Lyar (A + AB) and
H-(aA+ BB) = a(H - A) + B(H - B);

2)if K € Lyay(A) and o, 8 € R, then aH + K € Lyar(A) and
(aH +BK)-A=a(H A)+ B(K - A);

3) if T is a stopping time, then H € L, (A7), H1yo,7) € Lyar(A) and
(H- A = H-AT = (Hlj ) - 4

4K € Lyay(H - A) < KH € Ly (A) and then K - (H - A) = (KH) - A;
5) A(H - A) = HAA;

6) if A is predictable, then H - A is predictable;

7)if A€ ¥+, H > 0, then there is a version H - A which lies in ¥ .

EXERCISE 2.25.— Prove statements (1)—(4) of the theorem.

2.4. Integrable increasing processes and processes with integrable variation.
Doléans measure

We will assume that a stochastic basis B = (Q2,.7,F = (%;)cr, , P) satisfying
the usual conditions is given.

DEFINITION 2.12.— An increasing stochastic process A = (At)t€R+ € ¥+ is called
an integrable increasing process if EA,, < co. A process with finite variation A =
(Ap)ter, € 7 is called a process with integrable variation if E Var (A)s, < oo.
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The class of all integrable increasing processes is denoted by .27 T, and the class of all
processes with integrable variation is denoted by 7.

Similarly to the previous section, an integrable increasing process in the wide sense
(respectively a process with integrable variation in the wide sense) is understood as an
integrable increasing process (respectively a process with integrable variation) relative
to the filtration .%; = .%.

It is clear that &/* and . are stable under stopping and & = &+ — &/ *.If
A € of (or A is a process with integrable variation in the wide sense), then, for
w such that Var (A)s(w) < oo, there exists a finite limit lim;qoc A¢(w), so that a
random variable A, is defined and finite a.s.

It is possible to associate a finite measure on the o-algebra of measurable sets
with an integrable increasing process in the wide sense. This measure is called the
Doléans measure. Correspondingly, given a process with integrable variation in the
wide sense, we associate a bounded signed measure on the o-algebra of measurable
sets with it, which is also called the Doléans measure. Moreover, optional (i.e.
adapted) integrable increasing processes are indistinguishable if the corresponding
Doléans measures coincide on the optional o-algebra, while predictable integrable
increasing processes are indistinguishable if the corresponding Doléans measures
coincide on the predictable o-algebra. A more complicated important question is
whether a measure on the optional (respectively predictable) o-algebra is the
restriction onto this o-algebra of the Doléans measure of some adapted (respectively
predictable) integrable increasing process. This section is devoted to the study of
these issues.

DEFINITION 2.13.— Let A be a process with integrable variation in the wide sense. A
signed measure 114 on the space (2 x Ry, # @ Z(R,)) defined by

pa(B) = E(lp - Ax),
is called the Doléans measure corresponding to A.

PROPOSITION 2.4.— Definition 2.13 is correct. The signed measure 4 takes finite
values and vanishes on evanescent sets. If A is increasing in the wide sense process,
then w4 is nonnegative.

PROOF.— Obviously, 15 - A is a process with integrable variation in the wide sense
forevery B € . ® #(R..). Hence, 4 (B) is defined and finite; moreover, it is equal
to 0 on evanescent sets and takes nonnegative values if A is an increasing process in
the wide sense. So it is enough to check that ;14 is countably additive and only for
an increasing A. Let B be the union of a countable number of pairwise disjoint sets
B, € .7 @ B(R;). Put

én(w)=1p, - Ax(w), Ew)=1p" Ax(w).
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In view of [2.22] and since the Lebesgue—Stieltjes measure corresponding to the
function t ~» A;(w) is countably additive, we have { = )" &, a.s. By the monotone
(or dominated) convergence theorem,

NA(B):EgzzEfn:ZNA(Bn) U
n=1 n=1

PROPOSITION 2.5.— Let A be a process with integrable variation in the wide sense
and H be a bounded measurable process. Then the following integrals are defined,
finite and

/ Hdpa = E(H - Ax).

QXR+

EXERCISE 2.26.— Prove proposition 2.5.

Using the Doléans measure, it is easy to characterize those processes in o7 that are
martingales. Before we state the result, let us make a trivial remark that will be used
many times below without explanation. For A € 7, we have A’ < Var(A)s €
L', Hence, every local martingale in .27 is a uniformly integrable martingale and,
moreover, belongs to 7 L

THEOREM 2.13.— A process A € & is a martingale if and only if p4(B) = 0 for
every B € &,

PROOF.— To prove the sufficiency, it is enough to note that sets B = C'x]s,t], C' €
F5,0 < s < t, are predictable, so 4 (B) = 0 implies

#a(B) = ELo(Ar — As) =0,
which signifies that E(A;|.%;) = A; a.s.

Let A € o/ N .#. In view of the remark before the theorem, EA., = EAy = 0,
ie. pa(Q x Ry) = 0. It follows from the above formula that 4 vanishes on sets of
the form B = Cx]s,t], C € %, 0 < s < t. It is also obvious that u4(B) = 0 if
B has the form B = C x {0}, C € . Sets B of two indicated forms constitute
a m-system generating the o-algebra &2 (theorem 1.10). It remains to note that the
collection of sets on which a signed measure vanishes, satisfies conditions 2) and 3)
in the definition of a A-system, and then to use theorem A.2 on 7-A-systems. a

THEOREM 2.14.— Let A and A’ be the processes with integrable variation. If 14 (B) =
war(B) forevery B € O, then A and A’ are indistinguishable.

THEOREM 2.15.— Let A and A’ be the predictable processes with integrable variation.
If 1a(B) = pa(B) for every B € &, then A and A’ are indistinguishable.
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The following important result is an immediate consequence of theorems 2.15 and
2.13.

COROLLARY 2.10.— A predictable martingale in %7 is indistinguishable with the zero
process.

The proof of theorems 2.14 and 2.15 is based on the following lemma, whose
proof is given after we prove the theorems. For brevity, hereinafter we say that M =
(M) is a martingale associated with a bounded random variable £ if M is a bounded
martingale such that M; = E(£|.%;) a.s. forevery t € R..

LEMMA 2.3.—Let A € o/, £ a bounded random variable, M a bounded martingale
associated with &, T a stopping time. Then

E€Ar =E(M - Ap). [2.23]
If, moreover, A is predictable, then
E€Ar =E(M_ - Ar). [2.24]

PROOF OF THEOREM 2.14.— Take any ¢ € R, and an arbitrary set B € .#. Let M
be a martingale associated with 1 g. It follows from [2.23] and proposition 2.5 that

EI]_BAt == E(M . At> == E(M]]-[O.t] . Aoo) = / M]]-[O.t] d,uA.

QxR

Similarly,

EI[BA; = / M]l[o_t] dﬂA/.
QxR

Since signed measures 4 and p 4/ coincide on the optional o-algebra, integrals
of arbitrary optional functions with respect to these measures also coincide. Hence,
ElpA: = ELlpA,. Since B € % is arbitrary, we have A; = A} as., i.e. A and
A’ are modifications of each other. Indistinguishability of A and A’ follows from
proposition 1.1. a

PROOF OF THEOREM 2.15.— This is similar to the proof of theorem 2.14. We should
only use [2.24] instead of [2.23], which allows us to replace the optional process M
by the predictable process M _ in the displayed formulas. a



72  Stochastic Calculus for Quantitative Finance

PROOF OF LEMMA 2.3.— Let us first prove [2.23] assuming that A € &/ and T =
t € R,. Since M is bounded and right-continuous, P-a.s.,

M - At_7rll—l>go;Mkt Akt Ak;lt)

by the Lebesgue dominated convergence theorem. Using this theorem again, we get

E(M - A;) = lim ZE{MH(AH—A;C )}

n—0o0

:nh_I)I;OZE{E % Akt—Ak 1 )}
= lim ) E(§(Ax, — Aes,)) = EEAL
k=1

Now we prove [2.24] under the same assumptions as before and, additionally, for
a predictable A. In view of [2.23], it is sufficient to check that E(AM) - A; = 0.
By theorem 1.18, there is a sequence {7}, } of predictable stopping times, exhausting
jumps of A, i.e. such that [T,,] N [T3,,] = @ for m # n and {AA # 0} = U, [T,].
Since, for a fixed w, the function ¢ ~ AM;(w) takes at most a countable number of
values, we have, P-a.s.,

(AM) - ZAMT AA7, Ly, <43

n=1

Applying the dominated convergence theorem, proposition 1.11 and theorem 2.4,
we get

E(AM) - Ar =Y E{AMz, Az, Lz, <1}

n=1

=Y E{AAp 17, <y E(AMz, Lip, <o} | Fr, ) } = 0.

n=1

Thus, [2.23] and [2.24] are proved in the case where 7' is identically equal to a
finite ¢. Passing to the limit as ¢ — oo and using the dominated convergence theorem,
we get the result for T' = oo. If T' is an arbitrary stopping time, we apply the statement
we have just proved (with T = oo) to the stopped process AT instead of A. Using
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theorem 2.12 (3), we prove [2.23] and [2.24] for an arbitrary T'. Finally, the general
case with A € .o reduces to the considered case with A € .o/ due to proposition 2.3.
O

The assumptions that A is optional or predictable were used in the proofs of
theorems 2.14 and 2.15 only through relations [2.23] and [2.24]. Thus, it is natural to
ask whether [2.23] and [2.24] are valid for a broader class of processes with
integrable variation in the wide sense than optional or predictable processes,
respectively. The answer to this question is negative, and it is easy to make sure of
this in the optional case, while the predictable case is more difficult. Let us first
consider the discrete-time case. Then [2.23] and [2.24] are interpreted (for ' = n) as

€A, = > E(E[F)(Ax — Ap) [2.25]
k=1
and
E¢A, =Y E(E[Fr1)(Ar — Ap1) [2.26]
k=1

respectively, where £ is an arbitrary bounded random variable. Now it follows from
[2.25] that E€A,, = 0 for every bounded random variable ¢ satisfying E(¢|.%,,) = 0.
Due to exercise 2.27 given below, this means that A,, a.s. coincides with an %, -
measurable random variable (and is .%,,-measurable itself if the stochastic basis is
complete). Similarly, it follows from [2.26] that E€A,, = O for every bounded random
variable ¢ satisfying E(¢|.%,—1) = 0, i.e. A, a.s. coincides with an .%,,_;-measurable
random variable.

EXERCISE 2.27.— Let (£2,.%,P) be a probability space, ¢ a sub-c-algebra of the
o-algebra .% and 7 be an integrable random variable. Assume that En¢ = 0 for every
bounded random variable ¢ satisfying E(£|¢) = 0. Show that = E(1|¥) P-a.s.

HINT.— Apply the Hahn—Banach theorem.

In the continuous-time case, the statement that [2.23] implies that A is optional, is
proved similarly. We leave the details to the reader as an exercise.

EXERCISE 2.28.— Let A be a process with integrable variation in the wide sense.
Assume that, for every bounded random variable ¢ and for every ¢t € R, [2.23]
holds for T' = t, where M is a martingale associated with £. Prove that A € 7.

With regard to the predictable case, we can prove similarly that if [2.24] holds for
a predictable stopping time 7', then Ar is #p_-measurable (see details of the proof
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later on). However, this is not enough to prove the predictability of A; see
theorem 1.19. For the time being, let us introduce the following definition.

DEFINITION 2.14.— A process A with integrable variation in the wide sense is called
natural if, for every bounded random variable £ and for every t € R,

E€A;, = E(M_ - Ay), [2.27]
where M is a martingale associated with &.

The second part of lemma 2.3 says that a predictable process with integrable
variation is natural. As already been mentioned, the converse statement will be
proved later. Historically, the notion of a natural increasing process appeared before
the notion of the predictable o-algebra.

EXERCISE 2.29.— Show that a natural increasing process is adapted, i.e. belongs to
g

Recall that the optional and predictable projections are considered in section 1.6.

PROPOSITION 2.6.— Let A € o/ . Then, for every bounded measurable process X,
the optional projection OX is a version of the “conditional expectation” E,, , (X |0).
In particular,

/ (OX) d/iA = / Xd,uA. [2.28]
OxR4

QXR+

If, additionally, A is a natural process, then, for every bounded measurable
process X, the predictable projection IIX is a version of the ‘“conditional
expectation” E,, , (X|2?). In particular,

/ (I1X) dps = / Xdpa. [2.29]
QX]R+ QXR+

REMARK 2.8.— “Conditional expectations” E,,, (X|€) and E,,, (X|Z?) (we use the
quotes because (14 is a finite measure but not, in general, a probability measure) are
defined up to p4-null sets. These include evanescent sets, however, the class of fi4-
null sets is much wider. For example, let A = 17 [, where T' is a stopping time.
Then p4(B) = 0 means that the set BN[T] is evanescent. That is why the projections
cannot be defined as the corresponding conditional expectations.

PROOF.— We prove only the second statement; the optional case is handled similarly.
We must prove that, for every bounded measurable process X and for every B € &,

/ (HX)]]_BCZ/,LA:/ X]].Bd/AA.
QxR QxR4
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Since 1 p can be put under the sign of predictable projection because of the third
equality in [1.8], it is enough to consider the case where B = (2, i.e. to check that
[2.29] holds for every bounded measurable process X .

Now we can see that [2.27] in the definition of a natural process means that [2.29]
is valid for processes X of the form X = &ljg, where § is a bounded random
variable; see the expression for IIX for such X in the proof of theorem 1.21.

Let 7 be the set of bounded measurable processes X for which [2.29] is true.
Clearly, ¢ is a linear space and contains constant functions. If
0K XM<...€X"<...<C, X" € # and X = lim,, X™, then, as we know
from the proof of theorem 1.21, IIX = lim, I[IX™ up to an evanescent set.
Therefore, by the Lebesgue dominated convergence theorem, we can pass to the limit
under the integral signs in [2.29] for X™ as n — oo. Hence, X € 7. Now the claim
follows from theorem A.3 on monotone classes. O

Now we can prove the desired result.

THEOREM 2.16.— A natural process with integrable variation in the wide sense is
predictable.

PROOF.— The proof is based on theorem 1.19. Let A be a natural process with
integrable variation in the wide sense.

Let T be a predictable stopping time, and let £ be a bounded random variable such
that E(¢|.%7_) = 0. Consider a bounded martingale M associated with £. We assert
that M _ ]]_[[07'1“]] =0.

Indeed, let B € .%; and t € R;. Then BN {t < T} € Fr_ N.%;. Hence,
/ Milery dP = /E(§|§t)]lB]l{t<T} dP = /f]lB]l{KT} dP
B

_ /E(ng,)an{KT} P = 0.

Therefore, M;l;<ry = 0 as. and, for w from a set of measure one,
M (w)1fr<1(w)y = 0 simultaneously for all nonnegative rational ¢. Since trajectories
M (w) are right-continuous, we conclude that the process Ml is
indistinguishable ~ with the zero process. Hence, M_ljorjl{r>0; is
indistinguishable ~with the zero process. It remains to note that
Mo = E(§|%0) = E(E(¢|Pr-)|Fo) = 0 as.

Put X := {1[g 7]. Then

ILX = TI(€1{0,00)) Lo, ) = M-Lpo, 77 = 0.
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By [2.29], we get
Oz/ Xdus =EEAT.
QXR+

According to exercise 2.27, the random variable A7 is .%r_-measurable.

Let S be a totally inaccessible stopping time and B € #5. Put X = lg,7. It
follows from the definitions of predictable projection and totally inaccessible stopping
time that II.X = 0. Using [2.29], we get

0:/ Xd,LLA:EAAS]l{S<OO}]lB.
QXR+

Since the random variable AAg 1 (<o} is #s-measurable, we obtain

P(S < 00, Adg #0) = 0. 0

THEOREM 2.17.— Let p be a finite measure on the o-algebra & such that 1([0]) =0
and p(B) = 0 if B is evanescent. Then there exists a predictable increasing process
A € &/ such that its Doléans measure coincides with p on .

PROOF.— Take t € Ry and B € .%;. Let M = (M,);cr, be a bounded martingale
associated with 1 g. Define

Vg (B) = / M_ ]]'[[O,tﬂ d,LL
QXR+

Since p vanishes on evanescent sets, the expression on the right does not depend on
the choice of a version of M. It is obvious that v; is finitely additive on .%;. To prove
that it is countably additive, let us check that it is continuous at &. Let B,, € %,
By 2>2ByD>---2B,2...,N,B, = @, and let M™ be martingales associated
with B,,; without loss of generality, we may assume that 1 > M!(w) > M2(w) >
co. 2 MMw) = ... = 0for all w and s. By Doob’s inequality (corollary 2.6 and
remark 2.5)

E((M™)%)° <AE|ML2 = 4P(B,) = 0, n — oo.

Hence, (M™)%, i) 0 and, since the sequence M™ is monotonic in n,
(M™%, — 0 as. Thus, we have the monotone convergence of the sequence
M 194 to a process indistinguishable with zero process. Therefore, v4(B,,) — 0
by the monotone convergence theorem, and we conclude that 1, is a finite measure

on .%;.
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Obviously, 14 is absolutely continuous with respect to the restriction P; of P onto
;. Put

_ dn

Al = .
AP,

By the definition, A} is an .%;-measurable nonnegative random variable and EA} =
w([0,t]). In particular, A, = 0 a.s. Moreover, for every bounded .%;-measurable
random variable &,

E¢A; = / §dvy = / N_Tjo,q dp, [2.30]
Q

QxR4

where N is a martingale associated with £. Indeed, [2.30] holds for indicator functions
and, hence, for their linear combinations, from the definition of A}. Then it is proved
for nonnegative bounded £ by passing to a limit in monotone sequences of linear
combinations of indicators similarly to the proof of continuity of v; at &. Finally, use
the decomposition £ = £T — £~ in the general case.

Let0 < s < t, B € %, and let M be a martingale associated with 1 5 as above.
Then

EI[BAQ = / M,I[[[Oﬁt]] d,u
QxR

by the definitions and
ElpA, = E[E(15|%,)AL] = / M_1poq dp
OxR4
in view of [2.30]. Here we use that a martingale N associated with £ = E(15|.%) is
indistinguishable with M on [0, s]. Therefore, E15(A; — A%) > 0 forevery B € %,
hence
a.s. [2.31]

Put, fort € Ry,

Al = inf Al

reQ: r>t
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By the construction, for every w, the function ¢ ~» A}(w) takes nonnegative
values, is nondecreasing and right-continuous. Next, for every ¢t € R, we have
A} > A, as. in view of [2.31]. However,

//< : /: : — — /.
EAY < 11:1f tEAT re(lgl:lfr>tu([[0’r]]) w([0,t]) = EA;

reQ: r>
Hence, Ay = Aj a.s. In particular, A} are .%#;-measurable and A = 0 a.s.

Now define
Ay = A;/]I{Agzo}, teRy.

It follows from the above listed properties of the process A” that A = (A;)¢cr, €
¥ T . Moreover, A € o/ because, for every t € R,

EA; = EA} = EA} = u([0,4]) < u([0, <.
Let0 < s < t, B € %, and let M be a martingale associated with 1 5. Then M

is indistinguishable with 15 on [[s, co[ and, hence, M_ is indistinguishable with 15
on [|s, co[. Therefore,

pa(Bx]s,t]) = Elg(A, — A,) = ELg(A] — A)

[ M di = (B2, ).
QxR

That s and p coincide on & now follows from theorem 1.10 and from
theorem A.2 on 7-\-systems.

Due to theorem 2.16, it remains to prove that A is a natural process. Let t € R,
¢ be a bounded random variable, and let M be a martingale associated with £. Then
a martingale N associated with a random variable M, is indistinguishable with M on
[0, ]. Therefore,

E§At = EMtAt = EMtA; = / Mf:[].[[(),tﬂ d,LL
QxR
== / Mf]].ﬂ(]’t]] d/,LA = E(M, . At) O

QxR
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It follows from proposition 2.6 and theorem 2.16 that, for every bounded
measurable process X and for every predictable A € 7,

/ (I1X) dpa = / Xdpa.
QxR QxR

It turns out that it is possible to “change the roles” of X and A.

PROPOSITION 2.7.— Let A be a process with integrable variation in the wide sense.
There exists a unique (up to indistinguishability) predictable process B € o7 such that

/ X d,LLA = / X d,uB [232]
QXR+ QXR+

for every bounded predictable process X. This process is called the dual predictable
projection of A and denoted by A™.

COROLLARY 2.11.—Let A € &/ T. There exists a unique (up to indistinguishability)
predictable increasing process A € &/ such that A — A € ..

PROOF OF PROPOSITION 2.7.— Relation [2.32] means that the Doléans measures of
the processes A and B coincide on the predictable o-algebra &?. Hence, the
uniqueness follows from theorem 2.15, and the existence, in the case where A is an
integrable increasing process in the wide sense, follows from theorems 2.17 and 2.16.
The existence in the general case follows from the decomposition in proposition 2.3.
O

DEFINITION 2.15.— The dual predictable projection A™ of a process A € &/ with
integrable variation is also called the compensator of A and often denoted by A.

LEMMA 24.—Let A € /", and let A be the compensator of A. Then, for every
predictable stopping time T,

E(AA7Lipony| Pr-) = AArlirooey.
In other words, the assertion of the lemma can be formulated as follows:
II(AA) = AA,
see theorem 1.22 and remark 1.8.

PROOF.— Since A — A is a uniformly integrable martingale, see corollary 2.11, the
claim follows from theorem 2.4. O
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THEOREM 2.18.— Let A € o/*. The compensator A of A is a.s. continuous if and
only if AA7T 7y = 0 as. for every predictable stopping time 7',

PROOF.— The necessity is evident because of lemma 2.4. To prove the sufficiency, let
us use theorem 1.18 to represent the set {AA > 0} as the union of the graphs of
predictable stopping times 7;,. Then, on the one hand, AZT,L > 0 on the set {7, <
oo}. On the other hand, due to the assumption and by lemma 2.4, AZTH Ii7,<00} =0

a.s. Therefore, P(T,, < co) = 0 for every n, hence the set {Aﬁ > (0} is evanescent.
|

EXERCISE 2.30.—Let X = (X;)cr, be a Poisson process on a stochastic basis
(Q, #,F,P). Put T,, := inf{¢: X; > n}. Show that T, is a totally inaccessible
stopping time for every n.

HINT.— Apply theorem 2.18 to the process X .

EXERCISE 2.31.— Let i be a finite measure on the c-algebra .# ® ZA(R;) of
measurable sets such that ([0]) = 0 and p(B) = 0 if B is evanescent. Prove that
there exists an integrable increasing process in the wide sense A such that 4 = p.

Now we formulate a result dealing with the optional case which is not used later.
The proof is omitted. It is similar to the proof of theorem 2.17, with M_ replaced
by M in the definition of v;. However, that 14 and p coincide on & is proved more
difficult because there is no convenient characterization of the optional o-algebra &
similar to that of predictable o-algebra from theorem 1.10.

THEOREM 2.19.— Let p be a finite measure on the o-algebra & such that p([0]) =0
and p(B) = 0if B is evanescent. Then there exists an increasing process A € o/
such that its Doléans measure coincides with p on &.

EXERCISE 2.32.— Prove theorem 2.19.

HINT.- Follow the scheme suggested above. To prove that p and 4 coincide on &,
show with the wuse of theorem A.3 on monotone classes, that
J(OX)du = [(OX) dpua for every bounded measurable process X.

PROPOSITION 2.8.— Let A be a process with integrable variation in the wide sense.
There exists a unique (up to indistinguishability) process B € o/ such that

/ X d,LLA = / Xd,uB. [233]
QXR+ QXR+

for every bounded optional process X. This process is called the dual optional
projection of A and denoted by A°.
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PROOF.— This is similar to the proof of proposition 2.7. a

EXERCISE 2.33.— Let A be a process with integrable variation in the wide sense and
H a measurable bounded process. Show that, up to indistinguishability,

if H is an optional process, then (H - A)° = H - A?;

if H is a predictable process, then (H - A)™ = H - A™;
if A is an optional process, then (H - A)° = (OH) - A;
if A is a predictable process, then (H - A)™ = (ILH) - A.

HINT.— Use exercise 2.35 below.

EXERCISE 2.34.— Let A be a process with integrable variation in the wide sense. Show
that, for every bounded random variable ¢ and for every ¢t € R,

yﬁt)]a
yt)]

EXERCISE 2.35.— Let A be a process with integrable variation in the wide sense, H a
measurable process and E(|H| - Var (A)s) < oc. Show that, pi4-a.s.,

ESAY

e
k=1

e = i B[ Sy, - A

dpma _
dpa

THEOREM 2.20.— Let A, B € ¥ (respectively A, B € ¥ ) and dB.(w) < dA.(w)
for almost all w. Then there exists an optional (respectively a nonnegative optional)
process H such that the processes B and H - A are indistinguishable. If A and B are
predictable, then the process H can be chosen predictable.

PROOF.— We first prove the theorem under the assumption that A, B € &/*. Let C
be a measurable set such that ;14 (C) = 0. Then 1o - Ao = 0 a.s. It follows from the
conditions of the theorem that 1o - B, = 0 a.s. Hence, pup(C) = 0 and, therefore,
up <K pa. A fortiori, the absolute continuity persists if we consider the restrictions of
these measures on the optional or predictable o-algebra.

By the Radon-Nikodym theorem applied to the space (2 x R., ) and the
measures pals and pup|e, there exists an optional process H such that
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1(C) = [ Hdpa for every C € ¢. Combining this relation with Exercise 2.35,
we obtain that the Doléans measures of the processes H - A and B coincide on the
o-algebra &. By theorem 2.14, the processes H - A and B are indistinguishable.

If, additionally, A and B are predictable, then one should modify the previous
reasoning. Namely, we apply the Radon—-Nikodym theorem to the measurable space
(2 x Ry, &) and the measures 4|4, 1|, which gives us a predictable process
H such that ug(C) = fc H dp 4 forevery C € &2. Exercise 2.35 gives now that the
Doléans measures of the processes H - A and B coincide on the o-algebra &7, and, by
theorem 2.15, the processes H - A and B are indistinguishable.

Now let A, B € Y. Put Ty := 0, T, := inf{t: A; + By > n}. By
proposition 1.10 (2), T}, is a stopping time and, moreover, it is predictable if A and B
are predictable, see exercise 1.19. It is also clear that 7;, 1 +oc0. Define the processes

A" =1, 1A B"=1g, 11 B

Since A™ + B™ < n, we have A", B™ € o/*; if A and B are predictable, then
A™ and B"™ are predictable. It is also obvious that dB"(w) < dA™(w) for almost all
w. The first part of the proof yields nonnegative optional (predictable if A and B are
predictable) processes H™ such that B™ and H™ - A™ are indistinguishable. Then the
process H := > H"l[p,_, r,[ is nonnegative, optional (predictable, if A and B
are predictable) and B = H - A up to an evanescent set.

The case, where A € ¥ 1 and B € ¥, can be easily reduced to the considered
case due to proposition 2.3.

Finally, let us consider the general case, where A, B € #'. According to what has
been proved, there is an optional (a predictable if A is predictable) process K such
that A = K - Var (A) up to indistinguishability. Then Var (A) = |K| - Var (4) up
to indistinguishability, hence, 1y x|+1} - Var (A)oe = 0 as. Put J = Klgg=1y +
{1y~ The process J takes values 41, is optional (predictable if A is predictable),
and it follows from the previous relation that the processes K - Var (A) and J - Var (A)
are indistinguishable. Therefore, A = J - Var (A) up to indistinguishability.

Using what has been proved in the previous case, there exists an optional (a
predictable if A and B are predictable) process H’ such that B = H' - Var (A) up to
indistinguishability. It remains to put H := H'/J. O

2.5. Locally integrable increasing processes and processes with locally integrable
variation

Unless otherwise stated, we will assume that a stochastic basis B = (Q, #,F =
(Zt)ter., , P) satisfying the usual conditions is given.
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DEFINITION 2.16.— A process with finite variation A = (A;);er, € 7 is called a
process with locally integrable variation if there is a localizing sequence {T,,} of
stopping times such that AT+ € o7 for every n, i.e. the stopped process A’ is a
process with integrable variation. An increasing process with locally integrable
variation is called a locally integrable increasing process. The class of all processes
with locally integrable variation is denoted by ..., and the class of all locally
integrable increasing processes is denoted by .o

loc*

It is clear that

,SZ{Q,SZ{]OCQV, fQ{—‘rng{l:C:fQ{locmﬂ//—‘rg/y/—i_a
v‘Z{loc:%—i_ _d-i'

loc loc*

It is obvious from the definition that the process A € ¥ lies in &, if and only

if Var(A) € Jafljc, and that the classes .o4,. and szlj)'c are stable under stopping.

The first part of lemma 2.1 allows us to check trivially that .27, is a linear space. “By

localization” (i.e. applying the second part of lemma 2.1, see the proof of theorem 2.7),

we can prove that A € o, (respectively A € ,Qfljc) if A € ¥ (respectively A € ¥ )

and there is a localizing sequence {T},} of stopping times such that AT» € ..

(respectively AT» ¢ szljc) for every n. Symbolically, HAoc = (Hoc)locs Qfljc
(A,

loc)loc'

The following two important lemmas provide sufficient conditions for a process
from ¥ to be in H,e.

LEMMA 2.5.— Let A € ¥ and A be predictable. Then A € .

PROOF.— The process B := Var (A) is predictable. Put T;, := inf {¢: B; > n}. Then
T, > 0, lim, 00 T, = 400, and, due to exercise 1.19, T, is a predictable stopping
time. Let (S(n, p))pen be a foretelling sequence of stopping times for 7T,,. Choose p,
such that

P(S(napn) <T,— ]-) < 27”7

and put S, = max;,<n S(M, pp). Then S, < maxy,<n T, = Ty, hence, Bg, < n,
hence B € o/*. Moreover, the sequence (.S,,) is increasing and P(S,, < T, — 1) <
27", Therefore, by the Borel-Cantelli lemma, for almost all w, there is a number
n(w) such that S, (w) = T),(w) — 1if n > n(w). Thus, (S, ) is a localizing sequence.
Consequently, B € ;zf/ijc a

LEMMA 2.6.— Let M € ¥ N .Moc. Then M € oA..
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PROOF.— Let (.S,,) be a localizing sequence for M as an element of .%o, i.e. M5 €
M for every n. Put T, := S, Ainf {¢: By > n}, where B := Var (M). It is clear
that T}, 1" co a.s. We have, forevery t € R,

AB; = [AM| < [My| + [Me—|  and  [M;_|[ < Bi-.
Therefore,

Br, 1(1, <00} = B, 1{1, <00} + ABr, {1, <0}
< 2Br1, - 141, <00} + M7, |17, <00y < 20+ M1, |1{7, <c0}

hence By, < 2n + |Mr, |. It remains to note that the random variable My = Mi?:
is integrable by theorem 2.4. O

Before we turn to the main result of this section, we formulate and prove a
technical assertion which will be used several times in the rest of the book.

Let a localizing sequence {7,} of stopping times and a sequence {X"} of
measurable stochastic processes be given. Define .S,, as the restriction of 7, on the
set A := {w: lim, T,,(w) = oco}; since P(A) = 1, we have A € Zr, for every n,
hence, S, is a stopping time by proposition 1.5. Clearly

Si(w) < Sa(w) ... < S (w) <... and limS,(w) = .

for all w. Now define the process X recursively, putting, for all t € R and w,

X} (w),
ift € [0, 51 (w)];

X o) (@) + (K7 (@) = X5, ) (@), [2.34]
i1 €]81(w), Sn(w)],n'=2,3, ...

Xi(w) =

It is easy to see that, equivalently, X can be written as:

X = X5+ Y [(X™)5 = (Xm)5n1], [2.35]

n=1

where Sy = 0. Only finite number of terms do not equal zero in this sum for every w
and ¢, namely, corresponding to n such that S,,_;(w) < t. Hence, X is a measurable
stochastic process. We will say that X given by [2.34] or [2.35] is obtained by the
“gluing” procedure from { X"}, {T),}.

Some properties of “gluing” are described in the following proposition.



Martingales and Processes with Finite Variation 85

PROPOSITION 2.9.— Let X be obtained by the “gluing” procedure from { X"}, {T.,},
where {T,,} is a localizing sequence of stopping times and {X™} is a sequence of
measurable processes. Then:

1) if all X™ are cadlag (respectively continuous), then X is cadlag (respectively
continuous);

2) if all X™ are progressively measurable (respectively optional, respectively
predictable), then X is progressively measurable (respectively optional, respectively
predictable);

3)if X" € M. forall n, then X € Aoc;
4)if X™ € ¥ (respectively X™ € ¥7T) for all n, then X € ¥ (respectively
Xecvt),

5)if (X™)Tn-1 and (X"~1)Tn-1 are indistinguishable for every n = 2,3,...,
then X”» and (X™)?" are indistinguishable for every n = 1,2, ....

PROOF.—

The proof (1) is obvious from [2.34], and (2) follows trivially from [2.35] and
proposition 1.9. It follows from [2.35] that X 5% = XJ+3 ¢ _ [(X™)S» —(X™)S»1],
hence, under assumption (3), X°* € .#,. for every k, and the claim follows from
theorem 2.7. Assertion (4) is evident in view of [2.34]. Let assumptions in (5) be
satisfied. Then X" (w) and X"~ ! (w) coincide on [0, S,,—1 (w)]. By induction on n, it is
proved from [2.34] that, forw € B, X;(w) = X' (w) forall ¢ € [0, .S, (w)]. Therefore,
X5n and (X™)° are indistinguishable, hence X7 and (X™)™ are indistinguishable.
0O

The next theorem is the main result of this section.

THEOREM 2.21.—
1) Let A € ¥. The following two statements are equivalent:
a) A € Hoc;
b) there exists a predictable process A€ ¥ suchthat A — A € Moe.

Such a process A (if it exists) is unique up to indistinguishability and called the
compensator of A. If A € szljc, then the compensator A can be chosen in ¥ 7.

2) Let A € Ao, ﬁbeing the compensator of A, H € Ly, (A),and H - A € .
Then H € Ly, (A), H- A€ djoe,and H-A— H - A € M.

3)Let A e o/

'o.s B € ¥, and let B be predictable. The following statements are
equivalent:
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¢) B is a compensator of A;

d) EAr = EByp for every stopping time T';
e) E/thAt = E/thBt
0 0

for every nonnegative predictable process H.

REMARK 2.9.—If A is a process with integrable variation, the definition of its
compensator given in theorem 2.21 coincides with the previous definition in
section 2.4.

REMARK 2.10.— As example 2.3 below shows, the assumption H - A € &, in
assertion (2) is essential. In general, it cannot be replaced by the assumption
H € Ly, (A) alone or combined with H - A € .. Nevertheless, it should be noted
that, as follgws from a}§sertion (3) of the theorem, for A € ¥, the assumptions
He Ly, (A)and H- A € Ao imply H € Ly, (A) and H - A € Hoc.

It follows from theorems 2.21 and 2.10 that lemma 2.4 and theorem 2.18 are valid
for locally integrable increasing processes.

COROLLARY 2.12.—If A € ,., then, for every predictable stopping time 7, a.s.,
E(JAA7|L{rcoo}|Fr-) < o0
and

E(AATIL{T<OO} ‘yT7> = A1,4VT]]-{T<00]M

where A is a compensator of A.

COROLLARY 2.13.— Let A € @ . The compensator A of Ais a.s. continuous if and
only if AA7T 7y = 0 as. for every predictable stopping time 7',

EXAMPLE 2.3 (Emery).— Let S and 7 be independent random variables on a complete
probability space. It is assumed that S(w) > 0 for all w and S has the exponential
distribution: P(S > t) = ¢7%, ¢t € R, while P(p = £1) = 1/2. Put

0, ift<S, 0, ift<S, 1
Xt = . At = . Ht = 7]]-{t>0}'
n/S, ift>=S, n, ift>S, t

Put .70 = o{X,, s < t},F° = (F)ier, . and define a filtration F on (Q, .7, P)

P
by F := (IE‘0+) ; see exercises 1.2-1.4. Then A € Ao N Moc, H € Lyar(A) and
H-A=X eV, but X ¢ Hoc and X ¢ M.
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EXERCISE 2.36.— Show that A € Aoc, X ¢ Hoc, and X ¢ M), in example 2.3.

HINT.— Show that E| X | = oo for every stopping time 7" with P(7" > 0) > 0. To do
so, find a characterization of stopping times, similar to that in exercise 1.32.

PROOF OF THEOREM 2.21.— (1) If (b) holds, then, by lemmas 2.5 and 2.6, Ace o
and A — A € .A,.. Therefore, A € ...

Let A € @o.. Take a localizing sequence (T},) such that A”» € 7 for all n. By
corollary 2.11, there exists a compensator of A" := = A" i.e. a predictable process
A" € of such that A" — A" € .# (moreover, A" € JA/* if A € ¥7T). Note that

(AT”)T"’*1 = AT~-1_ This implies, in view of the uniqueness in corollary 2.11, that
An — (Z")T" and (g”)T"’l — An—1 = (ﬁ”fl)T"*1 up to indistinguishability.

Let A be obtained from {A”} {T} by the “gluing” procedure. Owing to
proposition 2.9, we have: Acv, Ais predictable, Acytif Ae 7t and AT s
indistinguishable with A", hence AT» — A™» € .#.Thus, A — A € M.

It remains to prove the uniqueness of the compensator If Aand A’ satisfy the
definition of the compensator, then the process B := A — A e vn Mo and
is predictable. By lemma 2.5 (or 2.6), there is a localizing sequence (7,) such that
BT» € /. By corollary 2.10, B is indistinguishable with the zero process for
every n.

(3) Assertion (d) is a special case of assertion (e) with H = 1o 7y, so implication
(e)=-(d) is obvious.

Let us prove (d)=-(c). Put M := A — B. Let a localizing sequence (7},) be such
that AT» € o/, then BT € &% in view of (d). Hence, MT» € </; moreover, for
every stopping time 7',

EM;" = E(Ag, a1 — Br,ar) =0

because of (d). Write this relation for ' = slp + tlg\p and T' = ¢, where s < ¢
and B € %, then subtract the obtained relations from each other. As a result, we get
E(MtT” — MI»)1p =0, hence, MT» € .# and M € M.

It remains to check implication (c)=-(e). Let us take a common localizing
sequence (7},) for A € .. and B € . (which is possible by lemma 2.1 (1)).
Then M7T» € . for every n because of (c), where M is defined as above. Therefore,
by theorem 2.13, the Doléans measures of the processes A7» and B~ coincide on
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the o-algebra &?. Hence, integrals of predictable functions coincide as well: for
nonnegative predictable H,

E/Hs]]-{Hsgn}]]-[[O,Tn]] dAs = / H1ipgny dpara
0 QxRy

= / Hsl{Hsgn} d/J,BT,,L = E/HIL{Hgn}IL[[O,Tn]] st.
QxR 0

It remains to pass to the limit as n — oo in terms on the left and on the right in
the above relation. We use the theorem on monotone convergence, first, for the inner
Lebesgue—Stieltjes integrals, then for the external integrals with respect to P.

(2) Let A = B — C' be the decomposition of A from proposition 2.3. Since
Var (H-A)=|H|-Var(A)=H"-B+H"-C+H -B+H -C,

each of the processes H-B, HT-C, H~- B, H~ -C is locally integrable and, hence,
has a compensator. Due to implication (c)=-(e) from assertion (3), we have, for every
stopping time 7T,

E/HjnHO,T]] dB, = E/Hj]l[[O,T]] dB;,
0 0

where B is the compensator of B. The left side of this equality is finite for 7" = T},
where (7},) is a localizing sequence for HT - B, and it follows that H € Ly, (B).
Moreover, H* - B is the compensator of H* - B by implication (d)=-(c) from
assertion (3), ie. H" - B — H" - B € .#,.. Applying the same arguments to
processes H - C,H= - B,H™ -C,weget H - A— H - A € Mge.

The theorem has been proved. a

For ease of reference, we state an assertion equivalent to the uniqueness of the
compensator.

COROLLARY 2.14.— A predictable local martingale with finite variation is
indistinguishable with the zero process.

Some properties of the compensator are formulated in the next proposition. A tilde
over a process signifies its compensator.
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PROPOSITION 2.10.—
1)If A € ¥ is predictable, then A = A.
2) If A € oA, and T is a stopping time, then AT = AT,
3 If A € g, then A € M), if and only if A =0.

HIEM € Mo NV, H E Lyoy(M),and H - M € Ao, then H - M € M.
In particular, if M € .#,. N ¥ and H is a locally bounded predictable process, then
H - M e M.

SYIfM € Moc NV and A, = ZOQ@ AM;, then A = (A;) € Hoc, the
compensator A has a continuous version, and M = A — A.

Equalities in (1)—(3) are assumed up to an evanescent set.

Assertion (4) says that the Lebesgue—Stieltjes integral H - M of a predictable
function H with respect to a local martingale M with finite variation is a local
martingale but only under the assumption that H - M € @,; see example 2.3.

Assertion (5) means that a local martingale with finite variation is the compensated
sum of its jumps.

PROOF.— Assertions (1)—(3) are obvious, and (4) follows from theorem 2.21 (2). Let
us prove (5). Since Var (A) < Var (M), we have A € #,.. Next, the process A — M
belongs to ¥ and is continuous, in particular, A — M is predictable. Since A — (A —
M) = M, it follows from the definition of compensator that A— M is the compensator
of A. O
LEMMA 2.7.— Let M € Moc. Then (M — My)* € o} and (AM)* € o}..
PROOF.— It is evident that trajectories of (M — Mj)* and (AM )* are monotone, and
their right-continuity follows from right-continuity of M. Both processes are adapted
because M is adapted and right-continuous. By theorem 2.7, there is a localizing

sequence (77,) such that M™» € 1, i.e. EM}, < oo for every n. It remains to note
that (M — My)* < 2M* and (AM)* < 2M*. O

THEOREM 2.22 (the Gundy decomposition).— Every local martingale A has a
decomposition M = M' + M?, where M' and M? are local martingales, jumps
AM?! are uniformly bounded, and M ey,

PROOF.— Put

Ay = Z AM g an,|>1}-

0<s<t
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It is clear that A = (A4;) € ¥. Put T,, := inf {¢t: Var (A4); > n}, then (T},) is a
localizing sequence. We have Var (4)™» < n+ (AM)*, where Var (4)™» € o4t by
lemma 2.7. Therefore, A € ..

Now define M? := A — A, where A is the compensator of A, and let M :=
M — M?. Since AMl AM — AA+ AA = AMIgam<iy + AA, it remains to

prove that absolute values of jumps AA are bounded by one.

Note that |AZT|11{T<OO} < 1 as. for every predictable stopping time 7'. Indeed,
this follows from corollary 2.12 and theorem 2.10:

AATL1co0) = E(AATL (1< o0y | Fr-)
= E(AMrL(r<oc)| Fr-) — E(AMrLjan <y Lir<ec)| Fr-)
= —E(AMrLgan < lir<oc)| Fr-)-

We can conclude from theorem 1.18 that the set {|AA'T| > 1} is evanescent. Now,

replacing A by the process A — > 0<s< AA which is indistinguishable

]l |AA|>1}’
from A, we obtain a version of A such that |AA| < 1 identically. O

EXAMPLE 2.4.— Let us consider the model from exercises 1.27-1.35. Assume that
S(w) > 0 for all w and S has the exponential distribution: P(S > t) = e~'. Put
A= 1y, oof The compensator of the integrable increasing process A is the process

A given by Ay := S At, see exercise 2.37 below.

Let M be a nonnegative uniformly integrable martingale on the considered
stochastic basis. Assume first that M is bounded. Then

()

EMg_ =E(M_-A)oo = E(M_ - A)se = EMo Ao = EM,S,

where the equality marked by () follows from lemma 2.3. (In fact, the formula above
is valid without the assumption that M is bounded; however, it needs to be justified.)

Now let the martingale M be defined through its terminal value M, given by
Moo = 572651{521}.

Also define nonnegative martingales M™ by M3 := Moo 1{g5<n}- Using what has
been proved, we get

EMs_ > EME_ =EMZLS =ES'e®1{1<5¢n)
n

= /:cile””efm dx = logn.
1



Martingales and Processes with Finite Variation 91

Therefore,
EM S— = OQ.

In particular, M € . but M ¢ 71

EXERCISE 2.37.— Show that A is the compensator of A in Example 2.4.

HINT.— Use implication (d)=-(c) from theorem 2.21 (3) and exercise 1.32.

EXERCISE 2.38.—Let X = (X;);cr, be a Poisson process with intensity 1 on a
stochastic basis (2, .%#,F, P). Put S := inf {¢: X; > 1}. Find the compensators of X
and X and compare answers with exercise 2.37.

HINT.— The compensator of X is a deterministic function.

EXERCISE 2.39.— As in example 2.4, consider the model from exercises 1.27-1.35,
but here do not assume that S has the exponential distribution. Put F'(¢) := P(S < t),

A= ]l[[S,oc[[a

SAt
= dF(s)
Avi= O/ T=F(s—0)

Show that the process A = (ﬁt) is the compensator of A. Show that, if the
distribution of S is continuous, then

- 1
Ae=los g a gy

Let T be a strictly positive totally inaccessible or predictable stopping time. In the
next two lemmas, we provide sufficient conditions on a random variable £ in order
for there to exist a local martingale M with the jump £ at T'; more precisely, § =
AM71 (1<} In fact, conditions that we suggest are also necessary: this follows
from lemma 2.7 for totally inaccessible 7" and from theorem 2.10 for predictable 7.

LEMMA 2.8.— Let T be a strictly positive totally inaccessible stopping time and £ an
Fr-measurable random variable vanishing on {I' = oco}. Assume that the process
A = 17,00 is a process with locally integrable variation. Then the compensator A
of A has a continuous version.

PROOF.— If £ > 0, the claim follows from corollary 2.13. The general case follows
from the decomposition § = £T — £~ O
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LEMMA 2.9.— Let T be a strictly positive predictable stopping time and £ be an % -
measurable random variable vanishing on {T' = oo}, E(|¢||Fr_) < oo, E(§|Fr_) =
0.Put A := &7 o[- Then A € o, and the compensator of A is zero.

PROOF.— We need to prove that A € .#),.. Let us first assume that £ is integrable
and show that A € .#. In other words, we want to show that, if M is a uniformly
integrable martingale such that M., = &, then M and A are indistinguishable.

In the proof of theorem 2.16, it was shown that if £ is, additionally, bounded, then
My = 0 as. and the process M1 7 is indistinguishable with the zero process. It
is easy to see that boundedness of ¢ is not fully used, and the arguments remain true
for integrable §. Next, § is #r-measurable, hence, the random variable {1 (7<) is
Z-measurable for every ¢t € R . Therefore,

Milir<yy = E(€|F) i<y = E(€Lr<ey|-Ft) = Eljrcsy = As-

Since M 1|7, and A are right-continuous, they are indistinguishable. Thus, M
and A are indistinguishable.

Now assume that a random variable £ satisfies the assumptions of the lemma but
is not integrable. By proposition A.2, there is an increasing sequence of sets B,, from
Fr_ such that U, B,, = Q a.s. and E[¢[1p, < co. PutT;, := T\, i.e. Tj, is the
restriction of 7' on the complement of B,. It is clear that (7)) is a localizing
sequence; moreover, all T, are predictable. As in the proof of lemma 2.5, we
construct a localizing sequence (5,) such that S,, < T, for every n. Also put
A" = {lp,l[po. We have proved above that A" € .#. But

ASn = (A”)S" € ./ ,hence, A € Moc. O
The following technical lemma will often be used below.

LEMMA 2.10.— Let L be an adapted cadlag process. Assume that there is a finite limit
lim; 0o Lt =: Lo a.8., E|L7| < 0o and ELy = 0 for every stopping time 7'. Then
Le .

PROOF.—Lett € Ry, B € %;. For T = tg and T = oo, the equality ELy = 0 is
written as E(L;1p + Loclo\p) = 0 and EL., = 0, respectively. Hence, EL;1p =
ELolp,ie., Lt = E(Loo|-Z;) as. forevery t € R, O

LEMMA 2.11.— Let M € #,. N« and N be a bounded martingale. Then

EM. N, =E Z AM,AN, [2.36]
seR
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and the process L = (L;), where

Ly = MN, - Y  AMAN,,

0<s<t
is a uniformly integrable martingale.

PROOF.— By lemma 2.3,
EMy Ny = E(N - My,).
Moreover,
E(N_ - M) =0,

because IN_ is predictable and the restriction of the Doléans measure j; onto the
predictable o-algebra is zero. Hence,

EMoNoo = E((AN) - M) = E>  AM,AN,.
seR

Now we can apply [2.36] to N7 instead of N, where T is an arbitrary stopping
time:

EMyNr =EM. Ny =E Z AMAN;,
s<T

i.e. EL7 = 0. So the second statement of the lemma follows from lemma 2.10. d

2.6. Doob-Meyer decomposition

We will assume that a stochastic basis B = (Q,.7,F = (%;)cr, , P) satisfying
the usual conditions is given.

In the discrete-time case, it is easy to prove that every submartingale can be
decomposed into the sum of a martingale and a predictable increasing process. This
decomposition is unique and called the Doob decomposition.

In the continuous-time case, such a decomposition may not exist. Indeed, we
considered examples 2.1 and 2.2 of local martingales, which are supermartingales
and not martingales. Changing the sign, take a submartingale X which is a local
martingale and not a martingale. If there were a decomposition X = M + A into a
martingale M and a predictable increasing process A, then A would be a predictable
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local martingale with bounded variation. Hence, A = 0 by corollary 2.14, and we
arrive at a contradiction. Moreover, a contradiction arises even if we do not require A
to be predictable: A € #,. N ¥ implies A = 0; see corollary 2.9.

Necessary and sufficient conditions for the existence and uniqueness of a
decomposition of a submartingale into the sum of a martingale and a natural (!)
increasing process were obtained by P.-A. Meyer, so it is called the Doob—Meyer
decomposition.

We begin with some preliminary considerations. If a process X can be
represented as X = M + A, where M € A, A € ¥ and A is predictable, then
such a decomposition is unique (up to indistinguishability) by corollary 2.14. The
same argument guarantees the uniqueness of the decomposition in all theorems
below.

Let a submartingale X admit the decomposition X = M + A into the sum of a
martingale M and an increasing process A (the predictability of A is not assumed).
Then EA; = EX; — EM,; < oo for every t € R. Since the stopped process A? is
majorized by a random variable A;, we have A € (DL). Since M € (DL), see
corollary 2.4, we have X € (DL); see theorem A.5 (2). Thus, a necessary condition
for the existence of the decomposition under consideration is that the submartingale
X belongs to the class (DL). We will see that this condition is also sufficient for the
existence of the decomposition even with a predictable A.

It is also easy to prove the necessity of another more technical condition for the
existence of the decomposition under consideration. That condition also turns out to
be sufficient, and the main difficulty in the proposed proof of the Doob—Meyer
decomposition is to prove that this technical condition follows from the condition
that X belongs to the class (DL). We first introduce some additional notation.

Denote by Z, the collection of all sets of the form B x {0}, B € %, or Bx]s, t],
s,t € Ry, s < t, B € % Itisclear that Z is a semi-ring. Recall that & = o{#}
by theorem 1.10. It is well known that finite unions of pairwise disjoint sets from %
form a ring that we denote by ¢

Let X be a stochastic process. For C' € &, define a random variable X (C') as
1p(X:—X;),if C = Bx]s,t],s,t € Ry, s <t, B e F;if C = Bx{0}, B e %,
we put X(C) :=0.Ifaset J € _Z is represented as the union of pairwise disjoint sets
Cy,...,Cyfrom Z, put X (J) := >, _; X(Cy). This definition is correct; moreover,
ifaset J € _Z is represented as the union of pairwise disjoint sets Jy, ..., J,, from

o then X(J) = >0 X(Jy).

Now let us assume that X is an adapted cadlag process and E| X;| < oo for every
t € R,. Define a function y1 = px on ¢ by u(J) := EX(J). According to the



Martingales and Processes with Finite Variation 95

previous paragraph, u is an additive set function on the ring _¢# . It follows from the
definition of a submartingale that X is a submartingale if and only if 1 is nonnegative
on # and, hence, on _¢ (recall that we consider only right-continuous
submartingales).

Now let a submartingale X admit a decomposition X = M + A into the sum
of a martingale M and an increasing process A. Then EA; < oo for every ¢ € R,..
Obviously, 1+ = pux and p4 coincide on % and, hence, on _# . But 114 can be extended
to a o-finite (countably additive) measure on & = o{ _# }, namely, to the restriction
of the Doléans measure of A onto 2. (In fact, the Doléans measure was defined for
processes A € of. However, if A € szljc, we can give exactly the same definition.
Then the Doléans measure takes values in [0, +-00] and its restriction onto & is a o-
finite measure.) Thus, for the existence of the above decomposition, it is necessary
that the measure 1 can be extended from the ring _# to a countably additive measure
on . The sufficiency of this condition is also easy to check: take as A the predictable
increasing process such that the restriction of its Doléans measure onto &2 coincides
with the extension of u on &2, see theorem 2.17. We realize this idea below. For
technical reasons, we deal with the case where y is bounded on 7.

LEMMA 2.12.— Let X be a submartingale and J € ¢ .Let T := D be the début of
the set J, and take u € R such that D C Q x [0, u]. Then u(J) < E(Xy — X7aq). If
random variables X; converge in L' to a random variable X ., then (.J) < E(Xo —
Xr).

PROOF.— Since T takes a finite number of values, [T A u,u] € _# and X(|T A
u,ul]) = Xy — Xray. However, p([0]) = 0 and J \ [0] € |T A w,u]. The first
assertion follows now because p is nonnegative. The second assertion follows from

(Xoo - XT) - (Xu - XT/\u) = (Xoo - Xu)]]-{Tgu} d

The most difficult part of the proposed proof of the existence of the Doob—Meyer
decomposition is the following lemma.

LEMMA 2.13.— Let X be a submartingale from the class (D). The function p: ¢ —
R, introduced above is bounded from above and continuous at &, i.e. J, € / ,
J12J 2 2Jy 2., Npdyp = & imply lim,, u(J,,) = 0.

PROOF.— We begin with some preliminary observations. The supermartingale —X
satisfies the assumptions of theorem 2.2. Hence, a.s. there exists a limit lim; o, X; =:
X . Due to the uniform integrability of X, convergence of X; to X, holds in L' as
well. Passing to a limit, as s — oo, in the inequality

/Xtdpg/xsdp, Be.Z, t<s,
B B
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we get Xy < E(Xo|F:). Hence, — X satisfies assumptions of theorem 2.3.

In particular, EX7 > EX| for every stopping time 7. It follows from lemma 2.12
that i is bounded from above.

Next, since X € (D), random variables X1, converge to X in L' asn — oo,
where T is an arbitrary stopping time. By theorem A.5 (1), the family X, where T’
runs over the class of all stopping times, is uniformly integrable.

Let (J,,) be a decreasing sequence of sets from ¢ with empty intersection.
Without loss of generality, we assume that J,, N [0] = @. Fix an ¢ > 0. Since X is
right-continuous in L, there are sets K, € _# such that the closure K,, (the set
whose w-section is the closure in ¢ of the w-section of K, for every w) is in J,, and

1(Jn) < p(Kp) +2 "
Put L, := K7 N---N K,; then, for every n,

w(Jn) < p(Ln) + €.

The sets L,, are decreasing and have empty intersection. Therefore, if T}, is the
début of the set L,, (that coincides with the début of the set L,,), then the sequence
(T, (w)) for every w is monotone and tends to +o0o (and even equals +oo for large n),
which follows from the closedness and the uniform boundedness in ¢ of w-sections of

L,(w). By lemma 2.12,

Since X belongs to the class (D), the expression on the right tends to 0 as n —
oo due to the above remark. This yields lim,, u(J,) < €. Since € > 0 is arbitrary,
lim,, p(J,,) = 0. O

THEOREM 2.23.— Let X be a submartingale from the class (D). Then there exists
a unique (up to an evanescent set) decomposition X = M + A, where M € #,
A € &/T, and A is predictable.

PROOF.— It is well known from the measure theory that lemma 2.13 allows us to
extend the function g from the ring ¢ to a finite measure on the o-algebra &
generated by it, in a unique way. This extension is denoted by the same letter .

Let B be an evanescent predictable set. Then its début Dp a.s. equals +oo, hence
C :={Dp < +oo} € Fy. Since B C [0] U ]0¢, +oo[, J0c, +oo] = U,]0c, n],
J0c,n] = Cx]0,n] € #Z and u(J0c, n]) = ELc (X, — Xo) = 0, we have u(B) = 0.
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Thus, the measure p on & satisfies the assumptions of theorem 2.17, which
implies the existence of a predictable process A € &+ such that y and the restriction
of the Doléans measure p 4 onto & coincide. In particular, put M = X — A. Let
s <t,B e %, Then

EII.B(Mt - MS) = E]]-B(Xt - XS) - E]]-B(At - AS)
= u(Bx]s,t]) — pa(Bx]s,t]) = 0.

Hence, M is a martingale. Moreover, all A; are majorized by an integrable random
variable Ao.. Therefore, A € (D) and, hence, M € (D), see theorem A.5 (2).

Finally, the uniqueness of the decomposition was mentioned above. a

THEOREM 2.24.— Let X be a submartingale. A decomposition X = M + A, where
M € #,A € VT, exists if and only if X € (DL). In this case, we can choose a
predictable A, and such a decomposition is unique (up to an evanescent set).

It turns out that an arbitrary submartingale admits a decomposition if M is
allowed to be a local martingale. Such a decomposition is also called the
Doob—Meyer decomposition.

THEOREM 2.25.—Let X be a submartingale. Then there exists a unique (up to
indistinguishability) decomposition X = M + A, where M € M., A € ¥, and
A is predictable.

PROOF OF THEOREM 2.25.— Define a stopping time T;, by T,, := inf {¢: | X;| >
n}An. Note that T, increase to +oc. Then X7, < n+|Xr, |, and X1, is integrable by
corollary 2.1. Hence, X € (D). However, X 7 is a submartingale by corollary 2.2.
By theorem 2.23, for every n, there is a decomposition

XTn = M™ 4+ A", [2.37]
where M™ € #, A™ € /™, A" is predictable for every n. Stopping processes in

both sides of [2.37] at time T, and comparing with [2.37], we get from the uniqueness
of the Doob—Meyer decomposition that

A™ and (A™)"" are indistinguishable for every n = 1,2,.... [2.38]
Similarly, stopping processes in both sides of [2.37] at time 7},_; and comparing
with [2.37] for index n — 1, we get from the uniqueness of the Doob—Meyer

decomposition that

A" 1 and (A™)""~* are indistinguishable for every n = 2,3, .. .. [2.39]
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Now let A be obtained by the “gluing” procedure from {A"}, {T,}. Due to
proposition 2.9, A is a predictable increasing process. Moreover,

A™ and AT are indistinguishable for every n = 1,2, .. ..
Therefore, if M := X — A, then

M™ and M ™ are indistinguishable for every n = 1,2, ....
Hence, M € #oc.

The uniqueness of the decomposition was mentioned at the beginning of this
section. O

PROOF OF THEOREM 2.24.— The existence of the decomposition is proved similar
to that in theorem 2.25 with the only difference that one should take 7;, := n. The
necessity of the condition and the uniqueness of the decomposition were discussed
earlier. O

EXERCISE 2.40.—Let X be a submartingale and a process with independent
increments on the considered stochastic basis. Find its Doob—Meyer decomposition.

HINT.— Use exercise 2.6.

2.7. Square-integrable martingales

Unless otherwise stated, we will assume that a stochastic basis B = (Q, .#,F =
(Z1)ter. , P) satisfying the usual conditions is given.

DEFINITION 2.17.— A martingale from the space .#? is called a square-integrable
martingale.

Recall that
MP={MeM:EM2 <o} ={MeM: sup EM}? < oo}
+
={M € Moc: E(ML)* < o0},
see section 2.1 and theorem 2.8. In particular,
E(MN)* < 4oo forevery M,N € .4>. [2.40]

We continue to speak about elements of the space .#? as stochastic processes. But
the reader should keep in mind that in this section, as a rule, elements of .# 2 are to
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be interpreted as equivalence classes consisting of indistinguishable square-integrable
martingales. As already noted, then .#? is isomorphic to L?(.%,) and, therefore, is a
Hilbert space with the scalar product

(M, N)_ g2 = EMooNac.

Orthogonality in this sense will be called weak orthogonality in order to emphasize
its difference from the notion of strong orthogonality introduced below.

Recall also that
1Mz < | Mllse2 < 2M g2, M € .47, [2.41]
where
1M[5= = E(MZ,)*.

If a sequence converges in L2, it converges in probability, hence, there is a
subsequence converging almost surely. Using this argument, we obtain, in particular,
the following lemma which will often be used in this section.

LEMMA 2.14.— If a sequence (M™) in .#? converges to M in the norm of .#?, then
there is a subsequence (ny) such that

lim (M — M™)% =0 as.,

k—o0
i.e. for almost all w, trajectories M ™ (w) converge to M.(w) uniformly in .

EXERCISE 2.41.— Let M € .. Show that, for s < t,
E(M? — MZ|F,) = E((M, — M.)*|.7).

Let M € .#?. Consider the square M? of M. By proposition 2.1, see also the
previous exercise, M 2isa submartingale. Moreover, M 2 ¢ (D) by [2.40]. Hence,
we can apply theorem 2.23, which asserts that there exists the Doob—Meyer
decomposition of M?:

M?>=N+A, Neu#, Aca™, Aispredictable.

DEFINITION 2.18.— The quadratic characteristic of a square-integrable martingale
M € .#? is a predictable integrable increasing process, denoted by (M, M) or (M),
such that M? — (M, M) is a uniformly integrable martingale. The mutual quadratic
characteristic of square-integrable martingales M, N € .#? is a predictable process
with integrable variation, denoted by (M, N), such that M N — (M, N) is a uniformly
integrable martingale.
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It is clear that the quadratic characteristic (M, M) and the mutual quadratic
characteristic (M, N) do not depend on the choice of versions of M and N. It
follows from the argument given before the definition that the quadratic characteristic
(M, M) exists for every M € .#*, while corollary 2.14 implies its uniqueness (up to
indistinguishability). The mutual quadratic characteristic (M, N) is also unique (up
to indistinguishability) by the same corollary, which yields the following fact as well:
if A is a predictable process, A € ¥ (respectively A € ¥ T)and MN — A € Mo
(respectively M? — A € M), then A = (M, N) (respectively A = (M, M)). The
existence of the mutual quadratic characteristic (M, N) for every M, N € .#? is
proved using polarization: for example, we can take the process

%(<M+N,M+N>— (M, M) — (N, N))
as (M, N).

The quadratic characteristic (M, M) is often called the angle bracket of a
martingale M € .Z>.

Since the quadratic characteristic is determined up to indistinguishability, relations
between them will always be understood up to an evanescent set, and it will not always
be mentioned explicitly.

Let us note that, obviously, the form (M, N) is symmetric and bilinear in the sense
just indicated.

EXERCISE 2.42.—Let a martingale M € .#? be a process with independent
increments on the considered basis. Find (M, M).

LEMMA 2.15-Let M,N € .#? and T be a stopping time. Then
(M,NT) = (M,N)T.

PROOF.— Put L := MNT — (M N)T. We will check that L € .# using lemma 2.10.
It is enough to verify only the last assumption on L. Let .S be a stopping time. Then
ELs = E(MsNsar — MsarNsar)
= E(E(Ms|Zsar)Nsar — MsarNsar) =0,
because E(Mg|Fsar) = Mgar by theorem 2.4.
Thus, L € .#. On the other hand, (M N)T — (M, N)T is a uniformly integrable

martingale by the definition of the characteristic. Therefore, M NT — (M, N)T € .#
O

THEOREM 2.26.— Let M, N € .#?, M and N be a.s. continuous. Then (M, N) has
a continuous version.
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PROOF.— This proof follows from theorems 1.18 and 2.4, see the proof of
theorem 2.18. O

DEFINITION 2.19.— Square-integrable martingales M, N € .#? are called strongly
orthogonal, if MyNy = 0 a.s. and M N is a local martingale.
LEMMA 2.16.—

1) If M, N € .#? are strongly orthogonal, then M N € .Z .

2) If M, N € .#? are strongly orthogonal, then they are weakly orthogonal.

3) M,N € .#? are strongly orthogonal if and only if MyNy = 0 as. and
(M,N) = 0.

PROOF.— (1) This proof follows from [2.40] and theorem 2.8. To prove (2) it is enough
to note that EM N, = EMyNy = 0 by part (1). Finally, (3) follows directly from
the definitions. a

DEFINITION 2.20.— A linear subspace ¢ C .#? is called a stable subspace if

1) A is closed in the norm || - ||_z2;

2) # is stable under stopping, i.e. M € # implies MT € # for every stopping
time T;

3) M € 2, B € %y implies Mg € 5.

Recall that, if L is a closed linear subspace in a Hilbert space H, the set Lt of
vectors that are orthogonal to all vectors in L, is called the orthogonal complement of
L. Tt is known that L is a closed linear subspace itself, and any vector in H has a
unique decomposition into the sum of a vector from L and a vector from L.

THEOREM 2.27.—Let 7 - M? be a stable subspace, and let
A+ = {N € #* EM, N, = Oforevery M € #} be its orthogonal
complement. Then 7+ is a stable subspace, and M and N are strongly orthogonal
forevery M € 7, N € .

COROLLARY 2.15.— Let 27 C .#* be a stable subspace. Then every M € .#*
has a unique decomposition M = M’ + M", where M’ € 5 and M" is strongly
orthogonal to all martingales in 7.

PROOF OF THEOREM 2.27.— As mentioned before the statement, s+ is closed in
the norm according to the theory of Hilbert spaces.

Let us take an arbitrary N € J# . Then

EM, Ny =0 forevery M € 7. [2.42]
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Let M € . For any stopping time 7', we have M’ € J# and we can apply
[2.42] with M T instead of M:

EMrNr = E(MTE(NOOL?T)) =EMrN, =0. [2.43]
Therefore, M N € .# by lemma 2.10. Moreover, it follows from [2.43] that

EM Np = E(E(MOONTL?T)) =EMprNr =0.
Hence, NT € s/~ because M € S is arbitrary.

Let M € 7 and B € %,. Since M1p € 5, we can apply [2.42] with M 1p
instead of M:

ElpMo N = 0. [2.44]

Hence, N1 € = because M € J is arbitrary. However, we have already
proved that E(M, Noo|-%0) = MoNy. Therefore, it follows from [2.44] that

ElpMoNy = E1pE(MoNuo| %) = 0,
and MyNy = 0 a.s. because B € .% is arbitrary. O

Here are some examples of stable subspaces.

EXAMPLE 2.5.— Let us define the subspace .# % of continuous square-integrable
martingales as the set of all elements (equivalence classes) in .22 which contain a
continuous square-integrable martingale, i.e. consist of a.s. continuous
square-integrable martingales. Less formally,

M*C = {M € #*: trajectories M.(w) are a.s. continuous. }

AM*¢ is a stable subspace. Indeed, that this space is linear and properties (2), (3) in
the definition of a stable subspace are obvious. Property (1) follows from lemma 2.14.
The orthogonal complement of . % is denoted by .# % and is called the subspace
of purely discontinuous square-integrable martingales.

Let us note that the process identically equal to 1 is in .#*°. Hence, since elements
of .#*¢ and .#** are strongly orthogonal, we have Ny = 0 a.s. forevery N € .# >4,

By corollary 2.15, every martingale M € .#? has a unique (up to
indistinguishability) decomposition

M = Mo+ M°¢+M<¢, Mee.#*>, M e.a*. [2.45]
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The components M€ and M? of this decomposition are called the continuous
martingale component and the purely discontinuous martingale component of M. It
follows from the definition that M§ = M¢ = 0. The uniqueness of this
decomposition implies that, for every stopping time 7', up to indistinguishability,

(M7 = (M), (M7 = (.

The reader should be warned that, for a square-integrable martingale with finite
variation, decomposition [2.45] into continuous and purely discontinuous martingale
components, as a rule, differs from the decomposition into continuous and purely
discontinuous processes with finite variation in exercise 2.22. See, in particular,
theorem 2.28 below.

EXAMPLE 2.6.— Let T be a strictly positive stopping time. Put
MPT) := {M € > {AM # 0} \ [T] is an evanescent set}.

M *[T) is a stable subspace: again, the linearity and properties (2), (3) from the
definition of stable subspaces are obvious and property (1) follows from lemma 2.14.

Note that the intersection of any family of stable subspaces is a stable subspace.
Consequently, there exists the smallest stable subspace containing a given martingale
M € .#?, and it will be described in Chapter 3. A somewhat more difficult problem
is a description of the smallest stable subspace containing a finite set of martingales
MY, ..., M* € #? Letus only mention here that it does not coincide, in general,
with the sum of smallest stable subspace containing M7, j = 1,..., k, which may not
be closed in the norm.

THEOREM 2.28.— of N . #?% C .34,

PROOF.— Let M € o/ N .#?. By lemma 2.11, M is orthogonal to any bounded
continuous martingale. Since every continuous N € %€ is a limit (in .#?) of
bounded martingales N7, where T}, := inf {¢: |N;| > n}, the claim follows. O

The following example shows that the inclusion in theorem 2.28 is strict in general.

EXAMPLE 2.7.— Let &1, ..., &,, ...be independent random variables on a complete
probability space (,.%#,P) and P(¢, = £1/n) = 1/2. Put
Fy = o{&1,..., &y, N}, where [] is the integer part of a number and .4 is a
family of null sets in .7,

M= &

n<t
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It is clear that M = (M) is a martingale and
EM? =E oY Ee - 1<001<
mE(Te) - XY Ly L
n<t n<t n<t n=1
hence, M € .. Let M™ be a process M stopped at time n. Then, by theorem 2.28,

M"™ € .#*“, hence, M, being the limit of M™ in .#?, is also an element on the
subspace .#%?. However,

Var (M)oo = > [én Z

We need the following two lemmas in order to study purely discontinuous square-
integrable martingales.

3\'—‘

LEMMA 2.17.— Let T' be a totally inaccessible strictly positive stopping time. Then
M3 T) C Mo NV and the subspace .#2[T] consists precisely of processes of the
form M = A — A where A = £l [, § is a square-integrable .#7-measurable

random variable vanishing on {T" = oo}, A is the compensator of A, and A is
continuous. If M € .#?[T) and N € ./?, then

MN — AMTANTIL[[TQO[[ e M.

In particular, EM2 = E(AM7)*L{r<c}. If N € .47, then the projection M of
a martingale N onto .#?[T) has the indicated form with { = ANp 170}

PROOF.— Let M have the form indicated in the lemma, then M € .#.. In order to
prove that M € .#?, it is enough to check that E(M*)? < co. To do this, in its turn,

it is enough to consider nonnegative £ and to show that Eggo < 0.

Let n be any .%#..-measurable bounded nonnegative random variable and L a
bounded martingale with Lo, = 7. By lemma 2.3, proposition 2.7, the Schwarz
inequality and Doob’s inequality (corollary 2.6),

Since

= sup EnA, = sup EnAs,
n€L?(Foo), n20 n€L?*(Foo), n20
En?=1 71 bounded, En?=1

oo
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we get
EA? <4EA? = 4E€? < 0.

Thus, M € #2. By lemma 2.8, the compensator A is a.s. continuous. Hence, the
set {AM # 0} \ [T] is evanescent. By lemma 2.11,

EMooNow = EEANT {100} [2.46]

for every bounded martingale V. Next, bounded martingales are dense in .#2 and
both sides of [2.46] are continuous linear functionals in N on .#? (the right side
is continuous in N because the mapping N ~~ ANrlir.} from AM* to L? is
continuous due to the inequalities (AN)* < 2N* and [2.41]). Hence, [2.46] is valid
for every N € .#?. In particular, M is weakly orthogonal to continuous N, i.e.
M € .#*9, hence M € .#*[T).

Take any N € .#>[T] and put £ := AN7 17 o). Define M as in the statement
of the lemma. Then, on the one hand, N — M is a.s. continuous, i.e. N — M €
M?¢; on the other hand, N — M € .#?[T| C .#*“. Therefore, N = M, i.e. the
subspace .#?[T) consists only of martingales M of the considered form. In particular,
MAT)C V.

Take any N € .#? and put £ := ANplir.o). Again, define M as in the
previous paragraph. Then A(N — M)71{r<o} = 0 a.s. Now it follows from [2.46]
that N — M is weakly orthogonal to any element in .#>[T]. Hence, M is the
projection of N onto . >[T).

Let M € .#*[T)and N € .#* . Put L :== MN — AM7rAN7L[r o0 and let S be
an arbitrary stopping time. Applying [2.46] with N instead of N, we get

EMsNg = EM Ng = EA]\4TA]\7T]l{S>T7 T<oo}s

ie. ELg =0.Bylemma2.10, L € ./Z. o

LEMMA 2.18.— Let T be a predictable strictly positive stopping time. Then .Z2[T] C
Moc NV and the subspace .7 [T consists precisely of processes of the form M =
§1pr 00, Where £ is a square-integrable .%#7-measurable random variable, vanishing
on {T = oo} and such that E(¢|.%7_) = 0.If M € .#>[T) and N € .#?, then

MN — AMrAN7Lpoof € A.

In particular, EM2 = E(AM7)?Lir<oo}. If N € .42, then the projection M of
a martingale N onto .#/>[T] has the indicated form with £ = AN7 17003
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PROOF.— If M has the form indicated in the lemma, then M € .#,. by lemma 2.9;
therefore, M € .#?. From now on, repeat the proof of lemma 2.17. d

COROLLARY 2.16.— Let T be a predictable or totally inaccessible strictly positive
stopping time. Then a square-integrable martingale N belongs to the orthogonal
complement of .#? [T if and only if AN7 Lo} =0 as.

In the next theorem, we describe a structure of the purely discontinuous martingale
component of any square-integrable martingale.

THEOREM 2.29.— Let M € .#? and let (T},) be a sequence of stopping times such
that every T,, is strictly positive and is either predictable or totally inaccessible,

{AM # 0} € | IT0] [2.47)

and
[T.]N[Tn] =92, m#n. [2.48]

Put A" = AM7, 1|7, sof, M" := A" — g”, N™:= M"+ .-+ M"™, where An
is the compensator of A™. Then the sequence N™ converges in .#? to M as n — co.
Moreover,

=E Y (AM) [2.49]

seERL

REMARK 2.11.— A sequence (7},) of stopping times satisfying the assumptions of the
theorem always exists; see theorem 1.17.

PROOF.— We have M™ € .#?[T,] by lemmas 2.17 and 2.18, AM™ = AA™ =
AM ]1[[Tn,]]’ and the graphs [7,,] are disjoint. Hence, the martingales M Lo M,
are strongly orthogonal by corollary 2.16. By the same reason, M — N™ is strongly

orthogonal to M 1 ..., M™ and, hence, to their sum N™. Therefore,
EMZ = E(NL)? + E(Mo — N2)? ZEMk oo — NIL)?
= > E(AMz)* Lz, cooy + E(Mo — N2L)%, [2.50]
k=1

where we use lemmas 2.17 and 2.18 in the last equality. In particular,
v, E(ME)? < oco. By the Cauchy criterion, the orthogonal series Yo, M*



Martingales and Processes with Finite Variation 107

converges in .# 2. Denote its sum by N. Since N is the limit of purely discontinuous
square-integrable martingales N", we have N € .#%9 On the other hand,
AN" = AM]IUZ':l[[Tkﬂ' Therefore, it follows from [2.47] and lemma 2.14 that AM

and AN are indistinguishable, i.e. M — N € M. Thus, N = M? and
M — N = My + M¢c.

Finally, passing to the limit as n — oo in [2.50] and using [2.47] and [2.48], we
get

E(ML) + E(Mo + M2)? = EM2,
- Z (AM7,)*1 (1, <o} + E(Moo — Nio)®

= Z )%+ E(Mo + MS)?,
eRL

hence [2.49] follows. |

COROLLARY 2.17.— A purely discontinuous square-integrable martingale M is
orthogonal to a square-integrable martingale N if AM AN = 0 (up to an evanescent
set).

PROOF.— Take the sequence (M™) as in theorem 2.29, then M™ is orthogonal to N
for every n by corollary 2.16, while M is the limit of the sums M* + --- + M™ by
theorem 2.29. d

According to [2.49],

E Z (AM,)? < +oo

seR

for every M € .#*. However, formally, the process <_(AMS)Q, in general, may
not be in .2/ and may not be increasing, because it may take value +oco and not be
right-continuous at one point (on a null set). We will often encounter such processes
in the rest of the book. So let us introduce a formal definition.

DEFINITION 2.21.— Let X be an optional process such that

{x #0y c Izl

for a sequence (7},) of stopping times. Assume that Xy = 0 a.s. and, forevery ¢t € R,

Z | X < 400 as.

s<t
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Under these assumptions, let us define a process S(X) as a purely discontinuous
process with finite variation such that, for every t € R,

S(X): = ZXS a.s.

s<t

LEMMA 2.19.— The process S(X) in definition 2.21 is well defined and unique up
to indistinguishability. If X is predictable, then S(X) is predictable. If X > 0, then
S(X) has a version in ¥,

PROOF.— Without loss of generality, we may assume that the graphs [7,,] are disjoint.
Then, for every t € R,

SN =D 1Xr <y, > Xe= > X, Lir, <y
s<t n=1 s<t n=1

which implies that
{Z |X,| < +oo} €%
s<t

and the random variable

>,

s<t

is #;-measurable. So put

S(X) =YX,
s<t
on the set B := ﬂn{zsgn | Xs| < +oo} N {Xo = 0} of measure one and

S(X); =0 on its complement. Under such a definition, S(X) € ¥? and
AS(X) = X1p. If X is predictable, then this version of S(X) is predictable by
proposition 1.8, while an arbitrary version of S(X) is predictable by corollary 1.2. O

DEFINITION 2.22.— The quadratic variation of a square-integrable martingale M €
*? is the increasing process

[M, M] := (M, M) + S((AM)?).
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The quadratic covariation of square-integrable martingales M, N € .#? is the
process with finite variation

[M,N] := (M¢,N) + S(AMAN).

The quadratic variation [M, M] is often called the quadratic bracket of a
martingale M € .42

Since the quadratic covariation is determined up to indistinguishability, all
relations including quadratic brackets are always understood up to
indistinguishability. In particular, the form [M, N| is symmetric and bilinear in this
sense.

Note that the process (M€, N€) is a.s. continuous by theorem 2.26. Therefore, the
processes A[M, N] and AM AN are indistinguishable for every M, N € .#>.

It follows from the definition and [2.49] that, for M, N € .#2,
[M,M] € &*, [M,N]€«,
and lemma 2.15 implies
[M,N"] = [M,N]" [2.51]

for every stopping time 7. Furthermore, (M C)2 — (M¢,M°¢) € .# by the definition
of the quadratic characteristic. Taking into account [2.49], we have

EM2, = EMZ2 + E(MS)? + E(M2)* = EMZ + E[M, M.

Applying this to M7 and using [2.51], we get EMZ = EMZ + E[M, M]r. By
lemma 2.10, we have M? — [M,M] € .#. Using polarization, we arrive at the
following statement.

LEMMA 2.20.—For M,N € .#? the processes MN — [M,N] and
[M, N] — (M, N) are uniformly integrable martingales. In particular, (M, N) is the
compensator of [M, N].

Let us formulate without proof a statement which explains the origin of the term
“quadratic variation”. For every M € .#? and t € R, for every sequences of
partitions v, = {0 = t5 < ¢y < -~ < tp, = t} such that
V| == maxy—1 k) [ty —th_1| — 0, it holds

k()
. 2
[M, M]; = P-lim )~ (Mg — Myy_,)", [2.52]
k=1

where P-lim stands for the limit in probability.
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THEOREM 2.30 (Kunita—Watanabe inequalities).— Let M, N € .#?, and let H and
K be measurable processes. Then a.s.

1/2 1/2
/|HK|dVar<MN (/H2 MM) (/K2 NN) [2.53]

and
1/2 1/2
/|HK|dVar[MN (/H2 [M, M] ) (/K2 d[N, N] ) . [2.54]
In particular,
e'e} [ee} 1/2
E/|HsKs|dVar(M,N>s < (E/Hf d(M,M>S>
0 0
o0 1/2
X (E / K2 d(N, N)S> [2.55]
0
and

oo

o0 1/2
E/|H3Ks|dVar [M, N]s < <E/H§d[M,M]S>
0

0
° 1/2
x(E / KZ2d|N, N]s) : [2.56]
0

PROOF.— Let us prove inequality [2.54]. Put
A:=[M,M]+ [N, N]+ Var ([M, N]).

By theorem 2.20, there exist optional processes F', G and J such that F.G > 0
everywhere and

[M,M]=F-A, [N,N]=G-A, [M,N]=J A



Martingales and Processes with Finite Variation 111

up to indistinguishability. Next, let A € 2. Then the processes
[M + AN, M + AN] and [M,M]+ 2\[M,N]+ \?[N, N]

are indistinguishable. Therefore, we can again apply theorem 2.20 according to which
there exists an optional nonnegative process (Q(\) such that

[M+AN,M+AN]=Q(\)-A
up to indistinguishability. Thus, the processes
(F+2X\J+X°G)-A and Q(N\)-A
are indistinguishable. Hence, P-a.s.,
Q\)s = F, +2)\J, + \2G,  for dA,-almost all s.
Consequently, with P-probability one,
Fy+2\J, + \2G, >0 for dA-almost all s.

holds simultaneously for all A € 2 and, hence, simultaneously for all A\ € R. Thus,
P-a.s.

|J,| < FY2GL/2 for dA,-almost all ¢.

The claim follows from the Schwarz inequality:

/|HsKs|dVar (M, N], :/|HSKS|\Js|dA5
0 0

< / HL P2 K| GY2 dA,
0

o0

12 , % 1/2
< (/ HZF, dAS> (/ K2G, dAs)
0 0
o0 12 , % 1/2
= (fmzanean) " ([ rzava.)
0 0
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Inequality [2.53] is proved similarly. Inequalities [2.55] and [2.56] are obtained
from [2.53] and [2.54], respectively, if we apply the Schwarz inequality. |

We end this section with the remark that, using localization, the notions of (mutual)
quadratic characteristic and quadratic (co)variation can be easily extended to locally
square integrable martingales. The case of the quadratic variation will be considered
in greater generality in the next section. Here we provide a necessary information
concerning quadratic characteristics.

DEFINITION 2.23.— A local martingale M is called a locally square-integrable
martingale if there is a localizing sequence {T},} of stopping times such that, for
every n, we have M™» € .2, i.e. the stopped process MT» is a square-integrable
martingale. The class of all locally square-integrable martingales is denoted by ///1%0
The quadratic characteristic of a locally square-integrable martingale M € .#2_ is a
predictable increasing process, denoted by (M, M) or (M), such that M? — (M, M)
is a local martingale. The wmutual quadratic characteristic of locally
square-integrable martingales M, N € .#_ is a predictable process with finite
variation, denoted by (M, N), such that M N — (M, N) is a local martingale.

The uniqueness (up to indistinguishability) of the quadratic characteristic and the
mutual quadratic characteristic follow, as above, from corollary 2.14. Their existence
is proved using the “gluing” procedure (proposition 2.9) similarly to the proof of the
existence of the compensator in theorem 2.21.

For locally square-integrable martingales, basic properties of quadratic
characteristics such as symmetry and bilinearity, lemma 2.15, theorem 2.26, the
Kunita—Watanabe inequalities [2.53] and [2.55], still hold true.

EXERCISE 2.43.—Let W = (Wt)teuh be a Wiener process on a stochastic basis
(Q, Z,F,P). Show that W € .#;?_, and find its quadratic characteristic (W, W).

2.8. Purely discontinuous local martingales

Unless otherwise stated, we will assume that a stochastic basis B = (Q2,.%,F =
(Zt)ter, , P) satisfying the usual conditions is given.

It was shown in the previous section that square-integrable martingales admit a
decomposition into the sum of continuous and purely discontinuous martingale
components and the structure of purely discontinuous martingales was investigated.
In this section, we fulfill a similar program for local martingales. Since stochastic
processes are implicitly understood up to indistinguishability, it is natural to consider
local martingales with a.s. continuous trajectories as continuous local martingales.
With regard to purely discontinuous local martingales, our definition is motivated by
the square-integrable case; see also lemma 2.21 below.
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DEFINITION 2.24.— The space of continuous local martingales and the subspace of
continuous local martingales starting from 0, are defined as

M, = {M € Moc: M as. continuous}
and Ao o = {N € M.: No=0as.},

respectively. The space of purely discontinuous local martingales is defined as
ML = {M € Mioe: My =0as.and MN € .M. forevery N € Mge0}-
Obviously, ., '//1;:)(:70 and //llfl)c are linear spaces.
LEMMA 2.21.—Let M € //lféc. Then M N € M, forevery N € ...

PROOEF.— It is enough to check that, if M € #,., My = 0 as., and & is an .%-
measurable random variable, then M¢ € .. Let {T},} be a localizing sequence for
M, Sy, = 0f¢|>ny is the restriction of the stopping time taking value zero identically
on the set {|¢| > n}. It is clear that {S,} and {S,, A T},} are localizing sequences,
(ME)SnNTn = EM™n 1y ¢1<ny. and it is easy to see that £,y M € A for
every n. O

REMARK 2.12.-1f M € .  and T;, = inf {t: [M;| > n}, then M7Tn is as.
bounded. In particular, M € .#? and M € .42,.

LEMMA 2.22.— The classes . _ and .4, are stable under stopping. If M € #oc
and MT € ;.. (respectively M™ € ;2 ) for some localizing sequence (7},) of
stopping times, then M € ¢ (respectively M € .42 ).

PROOF.— The assertions concerning .#. are obvious. If M € .#,. and
M™ ¢ //llﬁc for some localizing sequence (7;,) of stopping times, then, for every
N € ///1‘3070, we have MT» N € #o.. Hence, M™ N™» € Moc and MN € Moc
by theorem 2.7.

Let M € .4, T be a stopping time, N € M o- First let us prove that then

MTN € . under the following additional assumptions: M T ¢ #", N as.
bounded. Since M'N = MTNT + MT(N — NT)and M'NT = (MN)T € o,
it is enough to prove that the process L := M T (N — NT) satisfies the assumptions of
lemma 2.10, from which only the last one needs to be checked. Let .S be an arbitrary
stopping time. Then, due to the additional assumptions,

ELs = E(MsanrNs — MsarNsat)
= E(MsarE(Ns|Zsar) — MsarNsar) =0,

because E(Ng|Fsar) = Ngar by theorem 2.4.
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Now consider the general case. By theorem 2.7 and remark 2.12, there is a
localizing sequence (73,) of stopping times such that M7= € J#' and N7 is a.s.
bounded for every n. According to the previous case,
(MTN)Tw = MTANTaNTv € Myoe, hence MTN € M)oc. Therefore, MT € 2.
0O

LEMMA 2.23.— A N M? =M%, M2 N M* = 0>

PROOF.— The first assertion is obvious. If M € //lﬁc N .2, then, for every N €
M C ME ., we have MN € M. But EMZ NZ < oo due to [2.40], hence,
MN € # and EM N, =0,ie. M e 4%

Conversely, let M € .#%% and N € M. - By remark 2.12, MN™ ¢ #,
where T, := inf {t: |N;| > n}. Therefore, M NT» € _# for every n, hence
MN € Myoc and M € ME.. 0

LEMMA 2.24.— Mioc NV C M2,

PROOF.— Let M € Moc NV = Moc N Hoc and N € A . Take a localizing

sequence (7},) of stopping times such that M € .#,.N.o/ and N is a.s. bounded
for every n. Then M NT» € ./ by lemma 2.11. Hence, MN € ., and M €
M -

EXERCISE 2.44.— Construct an example of a purely discontinuous local martingale
starting from O for all w, which does not belong to 7.

HINT.— Modify example 2.7: replace jumps times ¢, = n by t, =n/(n+1).

THEOREM 2.31.— Every local martingale admits a decomposition:
M = Mo+ M°®+ M* [2.57]

into the sum of a continuous local martingale M€ € .#, . , and a purely discontinuous
local martingale M ¢ ¢ ,///ﬂc. This decomposition is unique up to indistinguishability.

REMARK 2.13.—-If M € .#?, then decomposition [2.57] coincides with the
decomposition into the continuous and purely discontinuous components, introduces
in example 2.5. This follows from the uniqueness of decomposition [2.57] and
lemma 2.23.

PROOF.— In order to prove the uniqueness, we have to check that the process N &€
Mige o N A2 vanishes except an evanescent set. By the definition of .#,?_, we have
N? € # .. Being a nonnegative process, N2 is a supermartingale by theorem 2.9.
Hence, 0 < EN? < ENZ = 0,i.e., N; =0as. foreveryt € R,.
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We turn to the proof of the existence. In view of the Gundy decomposition
(theorem 2.22) and lemma 2.24, it is enough to consider the case where the jumps of
M are bounded and My = 0. Put T}, := inf {t: |M,| > n}, then M 7" is bounded, in
particular, MT» € .#?>. It follows from section 2.7 that, for every n, there exists a
unique decomposition

MTe = M™ 4 M™ M™C e g2, MM e g,

Its uniqueness and lemma 2.22 imply that:
M™¢ and (M™°)™ are indistinguishable for every n = 1,2, ..., [2.58]
M™=1¢ and (M™°)T»-1 are indistinguishable for every n = 2,3,.... [2.59]

Let M¢ be obtained by the “gluing” procedure from {M™°}, {T,}. By
proposition 2.9, the process M€ is a.s. continuous. Moreover,

M™€ and (M¢)™ are indistinguishable for every n = 1,2, ...
in view of [2.58] and [2.59]. Hence, putting M? := M — M€, we have that

)T" are indistinguishable for everyn = 1,2, ....

M™® and (M?
Therefore, M¢ € .4, and M¢ € .42 by lemma 2.22. m

LEMMA 2.25.— For every local martingale M and for every ¢t € R,

> (AM,)? < 400 as. [2.60]

0<s<t

PROOF.— Due to the Gundy decomposition (theorem 2.22) and inequality (a + b)? <
2(a® 4+ b?), a,b € R, it is enough to consider two cases: M € .#72.and M €
Moe NV . In the first case, we may use relation [2.49] in theorem 2.29, which allow
us to conclude that, for some localizing sequence (77,),

Z (AM,)? < +oo  as.
0<s<Ty

for every n, which, obviously, implies [2.60]. In the second case [2.60] follows from
the inequality

> (AM,)? < ( > |AM3|) < (Var (M),)*. O

0<s<t 0<s<t

This lemma permits us to give the following definition.



116  Stochastic Calculus for Quantitative Finance

DEFINITION 2.25.— The quadratic variation of a local martingale M € .#),. is the
increasing process

[M, M] := (M, M) + S((AM)?).

The quadratic covariation of local martingales M, N € .#), is the process with
finite variation

[M,N] := (M¢, N°) + S(AMAN).

Recall that M¢, N° € 4., C 4., so the angle brackets (M¢, M€) and
(M¢€,N°) are defined; see definition 2.23. As in the square-integrable case, the
process (M€, N¢) is a.s. continuous. Hence, the processes A[M, N] and AMAN
are indistinguishable for every M, N € .#,.. Note also that in the case M, N € .#*
definition 2.25 coincides with definition 2.22; see remark 2.13.

Similarly to the square-integrable case, all relations between quadratic covariation
processes are understood up to indistinguishability, the form [M, N] is symmetric and
bilinear, [M, NT] = [M, N]T for every stopping time T and every M, N € ..
Also, the Kunita—Watanabe inequalities [2.54] and [2.56] are still valid. It is less trivial
to generalize the first assertion of lemma 2.20.

LEMMA 2.26.-If M, N € M, and My = Ny = 0 as., MN — [M, N] is a local
martingale.

PROOF.— Due to polarization, it is enough to consider the case M = N. In its turn,
using the Gundy decomposition (theorem 2.22), we should check that:

M? — [M, M] € Mo, [2.61]
MN — [M,N] € Mo, [2.62]
N? — [N, N] € Mo, [2.63]

where a local martingale M starts from 0 and has bounded jumps, and N € #,.N7 .
Since M € .2, [2.61] follows from lemma 2.20 by localization. Using localization
again, we can assume that M is bounded and N € .#j,. N </ in [2.62]. Then, by
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lemma 2.11, MN — S(AMAN) € .#, and it remains to note that N® = 0 by
lemma 2.24. Finally, by Fubini’s theorem, for every w

N2 = / dN, / dN, = / dN,dN,
10,¢] 10,t] 10,£]x]0,]

= / (]]-{u<v} + ]l{u>v}) dN,dN, + / ]l{u:v} dN,dN,

10, x]0,¢] 10,]x]0,¢]
/ ( / Liuco) dNu)de+ / ( / L) dNu>de
10,¢] 0,¢] 10,t] ]0,¢]

= N,_dN, + / AN, dN,,

10,t] 10,t]

ie. N2 =2N_- N + S((AN)?). Now [2.63] follows from proposition 2.10 (4). O

The following lemma strengthens lemma 2.25.
LEMMA 2.27.— Let M be a local martingale. Then [M, M]'/? € 7}
PROOF.— In view of the inequality (a+b)'/2 < a'/2+b'/2, a,b € R, itis enough to
consider separately the cases where M is either a continuous or a purely discontinuous

local martingale.

In the first case, [M, M] = (M, M) is a.s. continuous and, hence, [M, M]'/? ¢
¥ is a.s. continuous. Putting T}, := inf {¢: [M, M],}/2 > n}, we get E[M, M]%F{L2 <
n,ie. ([M,M]V2)™ € o+,

In the second case, we have [M, M] = S((AM)?). Using localization, we can
assume that M € .Z. Put

=inf{t: S((AM)?), > n*} Ainf {t: [M;| > n}.

Again using the elementary inequality from the beginning of the proof, we get

{s(@m), V7 < {2y, V7 v 1am 1, <)

Since the random variable on the right is integrable, the claim follows. O
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One of the fundamental results of the theory of martingales is the Burkholder—
Davis—Gundy inequality, which we formulate without proof. The case p = 1 is called
Davis’ inequality. Note that the previous lemma is a result of Davis’ inequality and
theorem 2.7.

THEOREM 2.32 (Burkholder-Davis—Gundy inequality).—Let M be a local
martingale, My = 0, T' a stopping time, p > 1. There exist universal positive
constants ¢, and C), (independent of 7', M and a stochastic basis) such that

c, E[M, MP/* < E(M;)? < C,E[M, M2/, [2.64]
COROLLARY 2.18.— Let M be a local martingale, My = 0, p > 1. Then
M e 7P < [M,MP/? ¢ o7+, [2.65]

M € AP, & M, MP/? € . [2.66]

loc

Here, 7" is the space of local martingales M such that there exists a localizing

sequence {T},} with M € P for every n.

THEOREM 2.33.— Let X be an optional process. There exists a (necessarily unique)
purely discontinuous local martingale M such that

AM =X
(up to indistinguishability) if and only if
E(| X7 1{rcoc}|Fr—) < oo and E(X7l{r<oc}|Fr-) =0 [2.67]

for every predictable stopping time T, the process S(X?) is well defined (see
definition 2.21) and

{S(X)}2 € e [2.68]
PROOF.— The necessity of conditions [2.67] and [2.68] follows from theorem 2.10

and lemma 2.27, and the uniqueness of M is a consequence of the uniqueness in
theorem 2.31.

By theorem 1.17, there is a sequence (7,) of stopping times such that

{X #0} = {AS(x?) # 0} < JITu], [2.69]
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(where the equality is up to evanescent set), every 7, is strictly positive and either
predictable or totally inaccessible, and

[T.]N[Tn] =2, m#n. [2.70]

Put A" = X7, 17, <00} 11, ,00[- In view of [2.68], we have A" € ., hence,

the compensator A™ of A™ is defined. Put M™ := A™ — An., By lemmas 2.8 and 2.9
(note that the assumptions of lemma 2.9 are valid because of [2.67]), we can assume
that the processes A™ are continuous. Hence,

AM"™ = X]]-[[Tn]]' [2.71]

By lemma 2.24, M™ € ///gc, hence, [M™, M™] = 0 for m # n due to [2.70] and
[2.71]. Put N := M + ...+ M", then

n

[Nn,Nn] — Z[M]’MJ] = S(X21uy:1|ITj]])

j=1
and
n+p
n+p _ AR NRHD _ NP J M = 2
[N*FP = N N™P = NP = 0 [MT, M) = S(XP1 e 1)
j=n+1

for every natural number p.

Let (Sk) be a localizing sequence such that E{S(X?) }922 < oo for every k;
without loss of generality, S — oo for all w. By Davis’ inequality,

E(N™)5, < CE[N", N"J* < CE{S(X?)}¥’
(in particular, (N™)%* € 2#') and

E(N"™*? — N™)5, < CE[N"*? — N" N"+? — N"|/?

<C
2 1/2
< CE{S(X ]lu?in+1[Tj]])}Sk .

The expression on the right tends to 0 as n — oo by the theorem on dominated
convergence. Therefore, for every k, (N ")Sk is a Cauchy sequence in 7 L and, hence,
by theorem 2.6, converges in 7 to a limit, which we denote by L*. It is easy to see
that L* = (L¥)S% and LF=1 = (L¥)S-1. So, using the “gluing” procedure, we can
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construct a process L € J4L. = M. such that L = L* for every k (all equalities

are up to indistinguishability). Now note that, by the construction, for every k,

E sup [N} — Ls| — 0.

s<Sk
On the other hand, forevery ¢t € R,

P(sup [N} — L| > ) < P(sup |NI — Ly| > ¢) + P(S, < t).

s<t s<Sk

Passing to the limit as n — oo and then as &k — oo, we get

sup | N — L] 0.
s<t

RS

Choosing a subsequence converging almost surely and using [2.69]-[2.71], we
obtain that the processes AL and X are indistinguishable. It remains to set M := L%,
O

EXERCISE 2.45.— Show that the process L in the proof of theorem 2.33 is itself a
purely discontinuous martingale.
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Stochastic Integrals

Unless otherwise stated, we will assume in this chapter that a stochastic basis
B = (Q,.%,F = (%)ier,, P) satisfying the usual conditions is given.

3.1. Stochastic integrals with respect to local martingales

The purpose of this section is to define a stochastic integral process jiO, 1l H,dM;
for a local martingale M = (M) for a wide class of possible predictable integrands
H = (H;). Here we limit ourselves to those H, for which the integral process is
a local martingale (we know from example 2.3 that this is not always the case). At
least continuous martingale are not processes with finite variations (corollary 2.14),
therefore, an integral with respect to such processes cannot be defined as a pathwise
Lebesgue—Stieltjes integral. The construction introduced below is called the stochastic
integral. The integral process, as in the case of the Lebesgue—Stieltjes integral, will be
denoted by H-M = (H - M,). To distinguish from the stochastic integral, the pathwise
Lebesgue—Stieltjes integral (which is defined in theorem 2.11) will be denoted by
H®MGtM e V).

First, let us define the stochastic integral H - M for square-integrable martingales

M and for predictable H, such that the integral process H - M is again a square-
integrable martingale. For this purpose, for a given M € .2, we introduce the space

L*(M): = {H predictable: E / HZd(M, M), < oo}
0

= {H predictable : / H? dparary < oo},
QXR+
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where ju(p7,ary is the Doléans measure of the integrable increasing process (M, M).
In view of the last equality, L?(M) is none other than the space L? of measurable
square-integrable functions on the measurable space (€2 x Ry, 2, uar | ).

Let us also introduce the class A of (“simple”) predictable processes of the form:

H =nlpg + Z §ilye,_y 0] (3.1]

i=1
where 7) is a bounded .%y-measurable random variable, n = 0,1,...,0 =ty < t; <
coe <ty < 400, & (0 =1,...,n) are bounded .%#;, ,-measurable random variables.

It is clear that A C L2(M) for every M € .#*. For H € A of the form [3.1] and for
M € .2, let us define the process H - M = (H - M;) by

H-M;:= Zfz (Mti/\t - Mti_l/\t)~
i=1

LEMMA 3.1.—Let H € Aand M € .#?. Then, H - M € .#? and
E(H -My)?= E/H§ d(M, M),.
0
If N € .#?, then
E(H - My)Ny = E/H5d<M, N),.
0

PROOF.— Obviously, H - M is a martingale. Since H - My = H - M _fort > t,, we
have H - M € .# . Furthermore, let 1 <i < j < n.Then¢ < j — 1 and

E&:; (tht - Mti,l/\t) (Mtjmf - Mtj,l/\t)

- EE{fifj (Mt,;/\t - Mti_ll\t) (Mtj/\t - Mtj_l/\t)

= E&& (Myne — My, o nt)E(Myne — My, pe| F,_,) = 0.

fitj_l}
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Hence,

n

E(H-Mx)? =EY (M, — M, )" =EY (M2~ M)

=1 =1

—EY (M) — (M) = [ 1200, M),
i=1 0

(to prove the second equality, we have used exercise 2.41). If N € .42, we have
E& (My, — My, ) Noo = E&(My, — My, )Ny,

and
E&; (Mtl. — Mti,l)Nti,l =0.

Similarly, we get

n
E(H - Moo)Noo = EY &(My, = My,_,)Noo
=1

=EY &(My, — My, ) (N, — Ny, ,)

i=1

= EZéi(MtiNti - Mti,thi,l)

=1
= EZ&((M, N)e, —(M,N)y, ) = E/HS d(M,N),. ]
=1 0

THEOREM 3.1.— Let M € .#?. The mapping H ~» H - M from A to .#? extends
uniquely to a linear isometry of L?(M) into .# 2. This extension is also denoted by
H ~~ H - M. Moreover, H - My = 0and A(H - M) = HAM (up to an evanescent
set) for every H € L?(M).

PROOF.— Obviously, the mapping H ~» H - M from A to .#? is linear. It is also
an isometry by lemma 3.1. Hence, to prove the first assertion, it is enough to show
that A is dense in L?(M). The last statement follows from the facts that in any L>2-
space (with respect to a finite measure), an arbitrary function can be approximated by
bounded ones, the bounded function can be approximated by a finite-valued function,
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and an indicator of a set can be approximated by an indicator of a set from a given
algebra that generates the o-algebra, and from theorem 1.10.

Since H - My = 0 is true for H € A, it holds for every H € L?(M).

It is clear that A(H - M) = HAM for all H € A. Let .5 be the class of those
bounded predictable processes H for which this equality holds (up to an evanescent
set). Since the mapping H ~» H - M is linear, it is obvious that 7 is a linear space
containing constants. Let a uniformly bounded sequence { H"} in ¢ converges to H
for all (w, t). Then, on the one hand,

A(H" - M) =H"AM — HAM.

On the other hand, H™ converges to H in L2(M ). Therefore, H™ - M converges
to H - M in .#? due to the isometry property. By lemma 2.14, there is a subsequence
ny such that, for a.a. w,

A(H™ - M) — A(H - M).

Therefore, HAM and A(H - M) are indistinguishable. A monotone class
argument (theorem A.3) and theorem 1.10 imply that J# contains all bounded
predictable processes.

If H is an arbitrary predictable process in L?(M), then the equality HAM =
A(H - M) is proved quite similar to the above by passing to the limit from H™
H1qm1<n)- =

REMARK 3.1.—1It is essential for the above argument that H™ converges to H
pointwise. If H™ converges to H only in L?(M), then we can assert, passing to a
subsequence, that H;"(w) — Hi(w) for piasary-aa. (w,t). It does not follow
directly (but can be proved) from the last relation that for almost all w
H"™ (w)AM(w) — Hy(w)AM,;(w) for all ¢.

DEFINITION 3.1.— Let M € .#? and H € L?(M). The process H - M determined in
theorem 3.1 is called the stochastic integral of H with respect to M.

The stochastic integral process is determined up to an evanescent set and does not
depend on the choice of versions of H and M. The same refers to other constructions
of stochastic integrals presented below in this chapter. Thus, all pointwise relations
containing stochastic integral processes are understood only up to an evanescent set.

EXERCISE 3.1.— Let M € .#? and T be a stopping time.
1) Show that

Ljory M = Lpogp- M =M" — M.
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2) Let T' be predictable. Find 1o 7 - M and Lo, - M.

The next theorem provides a useful characterization of the stochastic integral.

THEOREM 3.2.—Let M € .#? and H € L?(M). Then, for every N € .4,

E/|Ht|dVar(<M7 N)); < o0, [3.2]
0

E(H - My)Noo = EH * (M, N), [3.3]

(H-M,N)y=H"(M,N). [3.4]

If L € .#? and EL. N coincides with the expression on the right in [3.3] for
every N € .#2 then L = H-M.If L € .#? Lo =0and (L,N) = H ° (M,N)
forevery N € .42, then L = H - M.

PROOF.— [3.2] follows directly from the Kunita—Watanabe inequality [2.55]. For fixed
M, N € .#?, consider the functional

H ~ E[(H - Muy)Noo — H > (M, N) ]
on L2(M). It is linear and continuous (take [2.55] into account). By lemma 3.1, it
vanishes on A, and it was shown in the proof of theorem 3.1 that A is dense in L?(M).

It follows that the functional vanishes identically, which proves [3.3].

The process H ° (M, N) is predictable and belongs to .« due to [3.2]. Hence, to

prove [3.4], it is enough to check that (H - M)N — H ® (M,N) € .#.Let T be a
stopping time. Then

E(H ° (M,N)r) =E(H * (M,N7)),, = E(H - Moo)Ny = E(H - My)Nr,
where we make use of [3.3] in the second equality. Lemma 2.10 yields the claim.

Last two assertions of the theorem are obvious. O

COROLLARY 3.1.—Let M € .#*% H € L?>(M), and T be a stopping time. Then
(H-M)" =H-M" = (Hlj ) - M.

PROOF.— The assertion follows directly from theorem 3.2. O
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COROLLARY 3.2.—Let M,N € .#? H € L*(M)N L*(N), o, 3 € R. Then, H €
L*(aM + N)and H - (oM + N) = o(H - M) + 3(H - N).

PROOF.— It follows from the Kunita—Watanabe inequality [2.55] with K = H that
H € L*(aM + BN). Now the equality H - (oM + SN) = a(H - M) + B(H - N)
follows from theorem 3.2. O

COROLLARY 3.3.— Let 7 be a stable subspace of .#%, M € #, H € L*(M).
Then, H - M € J7.

PROOF.— Let N € . By theorem 2.27, M and N are strongly orthogonal. Hence,
(M,N) = 0 by lemma 2.16. Theorem 3.2 implies (H - M, N) = 0, hence, by
lemma 2.16, H - M and N are strongly orthogonal and H - M € 7. a

COROLLARY 3.4.—Let M € .#% and H € L*(M). Then, H € L?(M¢) N L*(M?),
(H-M)*=H-M¢ (H-M)=H- M-

PROOF.— The first assertion follows from the equality
(M, M) = (M¢, M) + (M M?). By corollary 3.2, H - M = H - M + H - M4,
and H - M¢ € #*¢and H - M? € .#*% by corollary 3.3. O

COROLLARY 3.5.—Let M € .#?, My = 0. Then the smallest stable subspace
containing M is 5# := {H - M: H € L>(M)}. Let N € .#*. There is a process K
in L2(M) such that (M, N) = K ° (M, M). For any K with these properties, the
projection N onto .77 is K - M.

PROOF.- Since My = 0, we have M = 1- M € JZ. By corollary 3.3, any stable
subspace containing M, contains ¢ as well. Therefore, to prove the first assertion,
it is enough to show that .77 is a stable subspace. Since the mapping H ~~ H - M
from L?(M) into .#* is a linear isometry, . is a norm-closed linear subspace of
A?. Next, it follows from corollary 3.1 that J# is stable under stopping. The last
property from the definition of a stable subspace is trivially true. Hence, .77 is a stable
subspace.

Let N € .#?. As we have just proved, the projection of N onto Z has the form
K-M forsome K € L?(M). Since N—K-M € s+, wehave (N—K-M, M) =0,
hence (M,N) = K ° (M, M) in view of [3.4]. Conversely, if K € L?(M) and
(M,N) =K (M, M),then (N—K-M,M)=0and (N—K-M,H-M)=H"
(N—K-M,M)=0dueto[34]. Thus, N — K - M € s+ O

COROLLARY 3.6.— Let M € .#?, H € L?>(M). Then, for every N € .#?,

E/|Ht|dVar([M,N])t <oo and [H-M,N]=H " [M,N].
0
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If L € .#% Ly = 0and [L,N] = H ° [M,N] for every N € .42, then
L=H-M.

PROOF.— The first assertion follows from the Kunita—Watanabe inequality [2.56], the
definition of quadratic covariation, corollary 3.4, [3.4], and theorem 3.1. The second
assertion reduces to the final statement in theorem 3.2 with the use of lemma 2.20 and
theorem 2.21 (2). O

COROLLARY 3.7.— Let M € .#* H € L*(M), and K be a predictable process. Then
K € L*(H-M)ifand only if KH € L?(M).Inthis case, K- (H-M) = (KH)- M.

PROOF.— The assertion follows from theorem 3.2 and a similar property of the
Lebesgue—Stieltjes integral, see theorem 2.12 (4). a

THEOREM 3.3.—Let M € .#*N Y, H € L>(M) N Lyay(M) and H ° M € .
Then H - M = H ® M.

PROOF.— By lemmas 2.24 and 2.23, M € .#*. Hence, by corollary 3.3, H - M €
M0 C ///{Ci)c. On the other hand, H ° M € Mo Nioe C ///{ci)c by proposition 2.10

(4) and lemma 2.24. It remains to note that, by theorem 3.1, A(H - M) = HAM =
A(H * M). O

Taking corollary 3.5 into account, we may conjecture that the smallest stable
subspace containing a finite number of square-integrable martingales M1,... . M™,
where Mg = e = Mg = 0, consists of sums
{HY-M*+ .-+ H" - M": H' € L*(M"),...,H™ € L*(M™)}. The following
example shows that it is not the case, in general. Namely, the subspace of sums is not
necessarily norm-closed. In fact, the smallest stable subspace containing
MY, . M™, is the closure of the linear subspace
{H' - M'+ .-+ H" - M": H' € L*(M?'),...,H" € L>(M™)} in .#*. It can be
also described with the use of so-called vector stochastic integral, see [SHI 02].

EXAMPLE 3.1.—Put A; :=t A 1l,t € R,. Let M and M be martingales from ./>
such that My = My = 0, (M) = (M) = A and (M, M) = 0, see exercise 3.2
concerning the existence of such processes. Let us also take a measurable function
K, with values in (0,1). We can consider K = (K) as a (deterministic) bounded
predictable stochastic process. Thus, we can define:

N:=K-M+(1-K)-Me.#*
We will show that M always belongs to the smallest stable subspace ¢ containing

M and N, while a representation M = H-M +G-N with H € L?*(M), G € L*(N),
exists only under an additional assumption on K.
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Put

Then, H™ and G™ are bounded and predictable (deterministic, in fact) stochastic
processes, and we can define

M":=H"-M+G" N,

moreover, M" e by corollary 3.3. Due to corollary 3.7, we get

M"=H"-M+(G"K)- M+ (G"(1 - K))- M =Lyzeqy_1y- M,

Owing to [3.4],

(M =M™ M—=M") = (Lgeoq_1y M, Ligeoy 1y M) = Ligeoy 1y * (M, M)
and

E(Moo — M™)2 =E(M — M", M — M") o, =E

[e.9]

]l{Kt>1—L} dt — 0

o—__

asn—>oo.Thus,Z\76e%”.

Assume now that M = H - M + G - N, where H € L2(M) and G € L2(N). By
corollary 3.7,

M= (H+GK) M+ (G1-K))- M,

hence

(H+GK) M+ (G1-K)—-1)-M=0.

Taking into account [3.4], we have

0=(H+GK) M+ (G1-K)—-1)-M)
= (H+GK)? " (M, M)+ [2(H + GK)(G(1 — K) —1)] (M, M)
+(G(1 = K)—1)2 7 (M, M)
=[(H+GK)*+ (G1 - K)—-1)? A
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In particular,

1. K,
= H = — deA' .C.
-k, " T TICK, ra-e

Gy

The condition H € L?(M) implies:

1 . )

t
/(1_Kt) dt < oo.
0

This is not always true. For example, take Ky = 1 — s for s € (0,1/2) and
K = 1/2 for other s.

EXERCISE 3.2.— Construct martingales M and M , satisfying the assumptions in
example 3.1.

HINT.— Take two independent Wiener processes W and W and stop them at time 1.

The next step in defining a stochastic integral is to localize definition 3.1. To this
aim, given M € ///fw we introduce a space
Lo (M): = {H predictable: H? € Lya((M, M))}

t
= {H predictable: /HS2 d{M, M), < oo P-a.s. forevery t € ]R+}.

DEFINITION 3.2.— Let M € .#_and H € L _(M). The stochastic integral process

loc

of H with respect to M is a locally square-integrable martingale N such that the
following is true: if 7" is a stopping time such that M7 € .#% and H € L?>(M7T),
then

N =g M.
The stochastic integral process will be denoted by H - M.

PROPOSITION 3.1.— The process N with the properties as in definition 3.2 exists and
is unique (up to an evanescent set).

PROOF.— Let M € .42 and H € L3 (M). Since H? © (M, M) is a predictable

loc
process, it belongs to ,;zfljc by lemma 2.5. Hence, there is a localizing sequence {7}, }
such that

M™ e .#? and H??(M,M)™ c o/t forevery n.
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In particular,

H e L*(M™) forevery n.
The uniqueness follows. Next, by corollary 3.1,

H - M and (H . MT”)T" are indistinguishable for every n = 1,2,. ..,

and

H-M""and (H - MT")T"’*1 are indistinguishable for every n = 2,3, . ...
The “gluing” procedure yields an adapted cadlag process N such that:

H - M and N are indistinguishable for every n = 1,2, .. ..

Since H - MT» € .#?, we have N € .#?

loc*

Let now T be a stopping time, MT € .#? and H € L*(MT). Then MT T ¢
AM* and H € L?>(MTNT) for every n. By construction and using corollary 3.1, we
get:

NTATw — (H - M™)" = H - M = (H - MT)™.

Hence, N7 = H-M7. Thus, the existence of N from definition 3.2 is also proved.
O

Note that the process H - M from definition 3.2 coincides with the previously
introduced in theorem 3.1 process H - M in the case M € .#?, H € L*(M). So our
notation is not ambiguous.

It is easy to verify that the stochastic integral H - M introduced in definition 3.2 is
linear with respect to each of two arguments, and we have, for every M € .4 _ and
HelL? (M),

loc

-~ H -My=0and A(H - M) = HAM (up to an evanescent set);

— for every N € /2, the processes H P (M,N), H ° [M, N] are well defined

and (H-M,N)=H " (M,N),[H-M,N|=H " [M,N];
—(H-M)T=H-M" = (HLjo7y) - M for every stopping time T';

~He L2 (M°)n LA

loc loc

(M4), (H - M)e = H - M¢, (H-M)4 = H - M
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—if K is a predictable process, then K € L2 (H - M) if and only if KH €

loc

L2 (M).Inthis case, K - (H-M) = (KH) - M,

loc
— if, additionally, M € ¥, H € Lya(M),and H ° M € Ao, then H-M = H °
M.

EXERCISE 3.3.— Prove the above assertions.

It is also useful to note that, for M € .#?_, the angle bracket (M, M) is the
compensator of the square bracket [M,M], see lemma 2.26. Therefore, by
theorem 2.21, we can replace (M, M) by [M, M] in the definition of L?(M) and
12,.(M).

We now turn to the definition of the stochastic integral with respect to an arbitrary
local martingale M. One possibility is to use the Gundy decomposition (theorem 2.22)
M = My + M" 4+ M? into the sum of a local martingale M' with bounded jumps
(and, hence, locally square-integrable) and a local martingale with bounded variation
M2, and to define H - M as H - M' + H ° M2. Though this approach is natural, we
use the other approach based on the decomposition [2.57] of a local martingale into
the sum of the continuous and purely discontinuous martingale components and on
theorem 2.33, characterizing the jumps of purely discontinuous martingales.

Let M € Mo and p > 1. Define the classes of integrands LP (M) and L?

loc (M)
by

L7(M) = { H predictable: H? € Lyqe([M, M]) and (H> * [M, M])""* € o+ },

L:D

loc

(M) = {H predictable: H? € Lya([M, M]) and (H2 ° [M, M])"'* ¢ %Tc}.

loc

if p > r > 1. In view of the above remark, the class L?(M) (respectively L2 (M)
2

has the previous meaning in the case M € .#? (respectively M € /2 ).

It is clear that LP(M) C LP. (M), LP(M) C L"(M) and L2, (M) C LI, (M),

Let H be a predictable locally bounded process. It follows from lemma 2.27 that
H e Ll (M) forany M € M.

loc

EXERCISE 3.4.— Prove that LP (M) and L}

loc (M) are linear spaces for every p > 1.

DEFINITION 3.3.— Let M € .#,. and H € Li .(M). The stochastic integral process

loc

H - M is the unique element in ., satisfying
H-My=0, (H-M)=H-M° A(H-M)=HAM.

In this definition, the process H - M€ is understood as in definition 3.2.
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PROPOSITION 3.2.— Definition 3.3 is correct.

PROOF.— According to the definition of the quadratic variation,
H? Y [M,M] = H* " (M®, M¢) + S(H*(AM)?). (3.5]

In particular, H2 ° (M¢ M¢) e ¥*. The process H> ° (M¢, M¢) is as.
continuous. Hence, H? ° (Me,M*) € 4271('; ie., H € LIQOC(MC). Therefore, the
integral H - M€ is defined and is a continuous local martingale, which follows from

A(H - M¢) = HAM® = 0.

Put X := HAM. Let us check that X satisfies the assumptions of theorem 2.33.
The relation [2.68] is obvious from the assumption H € L{ (M) and [3.5]. Let T be

loc

a predictable stopping time. By theorem 2.10 and proposition 1.11, a.s.

E(I X7l {r<oo} | Fr-) = |Hr|l{1<oo} EUAM [l 1oy | Fr—) < 00
and

E(X1rl{r<oo}|Fr-) = Hrlir<oc} E(AM7 L7 o 00y | Fr—) = 0.

Hence, [2.67] is also satisfied. We conclude from theorem 2.33 that there exists an
N € ///ﬁic such that AN = HAM. Thus, we can take H - M°¢+ N as H - M. The
uniqueness is evident from theorem 2.31. O

Definition 3.3 of the stochastic integral coincides with previous definition 3.2 in
the case M € .#2., H € L (M). This follows from the above mentioned properties

loc
of the stochastic integral in the sense of definition 3.2.

We now turn to properties of the stochastic integral that we just defined. The first
assertion is an immediate consequence of definition 3.3 and [3.5].

PROPOSITION 3.3.—Let M € M. and H € L (M). Then, H € L{ (M®) N
Ll

loc(Md)a (HM)C:HMC, (HM)d:HMd

The next proposition follows from the properties of the stochastic integral in the
sense of definition 3.2, exercise 3.4 and definition 3.3.

PROPOSITION 3.4.— Let M € Mo, H', H> € L} (M) and o, 8 € R. Then, o H' +
BH2 € L1 (M) and (@H" + BH?) - M = a(H' - M)+ B(H? - N).

loc

Next two propositions are proved similarly.

PROPOSITION 3.5.— Let M, N € Mo, H € L (M)N LL _(N), o, 8 € R. Then,

loc loc

He Ll (aM+AN)and H - (aM + BN) = a(H - M) + B(H - N).

loc



Stochastic Integrals 133

PROPOSITION 3.6.— Let M € .#,., H € Li. (M), and T be a stopping time. Then

loc
(H-M)" =H-M" = (Hljoq) - M.
EXERCISE 3.5.— Prove propositions 3.5 and 3.6.

THEOREM 3.4.— Let M € Mo and H € L{ (M).
1) Forevery N € Ao,

H € Ly([M,N]) and [H-M,N]=H ®[M,N].
In particular,
[H-M,H M) =H?"[M,M]. [3.6]

If L € Moe, Lo = 0 and [L,N] = H ° [M,N] for every N € Mo, then
L=H-M.

2) Forp > 1,

H-Mex#?< HeLP(M),
H-MeAH < HelLl (M).

loc loc

PROOF.—

1) That H € Ly, ([M, N]) holds follows from the Kunita—Watanabe inequality
[2.54] (we have mentioned in section 2.8 that it is also true for M, N € .#,.). Next,
due to properties of the stochastic integral in the sense of definition 3.2,

[H-M,N|=((H-M)*, N+ S(A(H-M)AN)
=(H -M° N+ SHAMAN)
= H " (M®,N°) + H " S(AMAN) = H * [M, N].
The last assertion is immediate.

2) Both assertions follow immediately from corollary 2.18 and [3.6]. a

PROPOSITION 3.7.— Let M € Mo, H € L (M), K be a predictable process,
p = 1. Then,

K e LP(H M)« KH e LP(M),

KelLl (H-M)< KH e LY (M),

loc loc

and any one of these relations implies K - (H - M) = (KH) - M.
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EXERCISE 3.6.— Prove proposition 3.7.

If a local martingale M is also a process with finite variation, then there are two
classes of predictable integrands, Li, (M) and Ly, (M), to which correspond two
kinds of integrals, H - M € #\,. and H Y M € . The next theorem gives a full
description of relationships between them. Recall that .#),. N Y C . (lemma 2.6),
and also the fact that H € Ly, (M) and H M e e imply H M e Mo

(proposition 2.10 (4)).

THEOREM 3.5.— Let M € Moc NV
DIfH € L (M) N Lya(M), then H- M = H ° M.

loc

DI H € LL (M)\ Lyar(M), then H-M & V.

loc

3)If H € Lyar(M)\ LL (M), then H ° M ¢ M.

loc

The most typical situation is described, of course, in the first statement of the
theorem. For example, if H is a locally bounded predictable process, then
H € LL (M) N Ly (M) for every M € ., N V. For an example of a local

loc
martingale M € #,. N ¥ and a process H € Ly, (M) such that H M ¢ Moc,
see example 2.3; it follows from (1) that H ¢ L{ (M) in this example. An example

loc
of a local martingale M € .#),. N ¥ and a process H € Llloc(M) \ Lyar (M) will be
constructed after the proof of the theorem.
PROOF.-
1) Let H € LY (M)NLya, (M). By the definition of L. (M), there is a localizing

loc loc

sequence {5, } such that:
E(H?® M, M]s,)"/? < 00
for each n. Put
T, := S, Ainf {t: Var (H ° M), > n}.
Then T, 1 oo a.s. due to the condition H € Ly, (M), and
Var (H ° M)z, <n+|Hr, AMp, 1z, <ooy| <0+ (H?° [M, M]g,)"/>.

The right-hand side has a finite expectation, hence H Me Hoc-

Next, by proposition 2.10 (4), H M e Mo and, moreover, by lemma 2.24,
H®M e .#l,. Since M € .4, by lemma 2.24, we have (H - M)¢ = H - M¢ = 0.
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Moreover, A(H ° M) = HAM. Therefore, H ° M coincides with H - M according
to the definition of the latter integral.
2) Assume that H € LIOC(M) and H-M € ¥.Put A:= 3, . AM;andrecall

that A € Ao and M = A— A, where A is the compensator of A, see proposition 2.10
(5). Since H - M € _#,. by the definition of the integral and H - M € ¥ by the
assumption, we get H-M € . by lemma 2.6. But we also have A(H-M) = HAM

and, hence, the process H 7 Ais defined. Moreover,

Var (H" A)= Y |HAA|= > [HAM,|= > |AH- M),

0<s<- 0<s<- 0<s<-
< Var (H - M),

where H ° A € .. It follows from theorem 2.21 (2) that H € Lvar(g). Thus,
H e L, (M).

3) Assume that H € Ly (M) and H ° M € Mioe. Then H ° M € oo by
lemma 2.6. As we noted above, M € .4, therefore, [M, M] = S((AM)?) and

(H? M, M))Y/? = {S((HAM)Q)}UQ < S(|HAM])

< Var (H ° M) € o

loc?

hence H € L. (M). O
EXAMPLE 3.2.— Let &1, ..., &,, ...be independent random variables on a complete
probability space (Q2,.%, P). Moreover, P(¢, = £27") = 1/2. Putt,, = n/(n + 1),
Fri=0{&,.. . &ny oot by <t} V o{ A}, where A consists of null sets from .#
>
n: t, <t

It is clear that M = (M,) is a martingale and

M, M)y = > 27", Var(M), = 27" < 1,

n: t, <t n: t, <t

so that M € 7. Let us define deterministic functions H = (H;) as follows: H; =
2"/n,n=1,2,... and H; =0, ift ¢ {t1,...,tpn,... }. Then

2
H? " [M, M), = Z ~ 2—2”: S o \%.

n: t, <t n: t, <t
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It follows that H € LP(M) for every p > 1. However,

1
HydVar(M), =Y —27"=%" = =,
[ avar .= 32T = 32 <o
J <

sothat H ¢ Lya (M).

3.2. Semimartingales. Stochastic integrals with respect to semimartingales:
locally bounded integrands. It6’s formula

DEFINITION 3.4.— An adapted cadlag process X = (X;)icr, is called a
semimartingale if X admits a decomposition:

X=Xo+M+A, Mc Mo, AEV. [3.7]

The class of all semimartingales is denoted by ..

Trivial examples of semimartingales are, of course, local martingales and
processes with finite variation. More interesting examples of semimartingales are
submartingales and supermartingales, see the Doob—Meyer decomposition
(theorem 2.25).

The decomposition [3.7] is not unique. However, it follows from corollary 2.14
that if there is a decomposition [3.7] with a predictable A, then such a decomposition
is unique (up to an evanescent set).

DEFINITION 3.5.— A semimartingale X is called a special semimartingale if there
exists a decomposition [3.7] with a predictable A. This decomposition is called the
canonical decomposition of a special semimartingale. The class of all special
semimartingales is denoted by .7},.

Local martingales, submartingales and supermartingales are special
semimartingales. Theorem 2.21 (i) asserts that a process with finite variation is a
special semimartingale if and only if it is a process of locally integrable variation.

Before we provide a characterization of special semimartingales, let us prove a
lemma that will be useful later as well.

LEMMA 3.2.— For every semimartingale X and for every t € R,

Z (AX;)? < +o00  as.

0<s<t
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PROOF.—Let X = Xg+ M + A, M € Mo, A € V. By the Schwarz inequality,

(> (AXS)2)1/2 <(X (AMS)2)1/2+( 3 (AAS)Q)I/Q. [3.8]

0<s<t 0<s<t 0<s<t

It remains for us to note that, by lemma 2.25,

Z (AM,)? < 400 as.

0<s<t
and
2
3 (A4,)? < ( 3 |AAS|) < {Var (4),;}? < +o0. [3.9]
0<s<t 0<s<t

O
THEOREM 3.6.—Let X be a semimartingale. The following statements are
equivalent:
1) X is a special semimartingale;
2) there exists a decomposition [3.7] with A € @,;
3) A € . in every decomposition [3.7];
4) (X — Xo)* € F;

loc?

5) {S((AX)2)V? e at;
6) (AX)* €

loc*

PROOF.— (1)= (2) follows from lemma 2.5.

(2)=(1) Let X admit a decomposition [3.7] with A € .o/,.. By theorem 2.21 (1),
there exists the compensator A of A. Then the decomposition X = X + (M + A —
ﬁ) +Aisa decomposition of the form [3.7] with a predictable process with finite
variation.

(2)=(4) Let X admit a decomposition [3.7] with A € . Then, (X — Xp)* <
M* + A* < M* + Var (A). By lemma 2.7, M* € fﬁafljc, and (4) follows.

(4)=-(6) follows from the inequality (AX)* < 2(X — Xj)*.
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(6)=-(3) Let us take any decomposition [3.7]. Since (AA)* < (AM)* + (AX)*
and (AM)* € o} by lemma 2.7, we have (AA)* € 7} . Hence, there exists a
localizing sequence {.S,, } such that:

E sup |AA,| < o0
s<Sn

for every n. Put
T, := S, Ainf {t: Var (A) > n}.
Then T}, 1 oo a.s. and

Var (A)r, <n+ |AATn]l{Tn<OO}\ <n+ sup |AAg,

s<Sn
hence, E Var (A)r, < oo.
(3)=(2) is obvious.

(2)=(5) Let X admit a decomposition [3.7] with A € ,.. Then, by the
inequalities [3.8] and [3.9],

(S(AX)) )2 < {S(AM)*)}? 4 Var (4).

The first term on the right belongs to .7

loc DY lemma 2.27, and the second term
does the same by the assumption.

(5)=(6) follows from the inequality (AX)* < {S((AX)2)}'/.

COROLLARY 3.8.— The following statements are equivalent:
1) X is a predictable semimartingale;

2) X is a special semimartingale and the local martingale M in its canonical
decomposition is a.s. continuous.

In particular, a continuous semimartingale X is a special semimartingale and we
can take continuous versions of M and A in its canonical decomposition.

PROOF.— Implication (2)=-(1) is obvious due to corollary 1.2. Let X be a predictable
semimartingale. By lemma 3.2, the process S((AX)?) is well defined, and it is

predictable and increasing by lemma 2.19. Then {S((A X)z)}1/2 is also a
predictable increasing process. By lemma 2.5, {S((Ax)Q)}l/Q c ot

loes and it
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follows from theorem 3.6 that X is a special semimartingale. Let X = Xy + M + A
be its canonical decomposition. Then M is a predictable local martingale. Combining
proposition 1.11 and theorem 2.10, we obtain that AMr 1 r..} = 0 a.s. for every
predictable stopping time 7. By theorem 1.18, the set { AM = 0} is evanescent.

If X is continuous, then AM = —AA and, as was proved above, A is a.s.
continuous. So the decomposition

X =X, + (M+§AAS) + (A—;:AAS)
is a required one. O

The last assertion in corollary 3.8 follows also from the next theorem..

THEOREM 3.7.— Let X be a semimartingale and |AX | < a for some a € R,. Then X

is a special semimartingale and, for M and A in its canonical decomposition, |AA| <
a and [AM| < 2a.

PROOF.— By theorem 3.6, X is a special semimartingale. Let X = Xy, + M + A be
its canonical decomposition, and let 7" be a predictable stopping time. By
proposition 1.11 and theorem 2.10,
AATII-{T<00} = E(AAT]]-{T<OO}‘§T7) = E(AXT]]-{T<OO}|<?\T7)
—E(AMrT(reny| Fr-) = E(AX7L(r<ocy| Fr-),

hence [AATT{7<s0}| < a as. By theorem 1.18, the set [AA| > a is evanescent. [

It is clear that the classes . and .7}, are stable under stopping and linear
operations. Let us show that they are stable under localization.

THEOREM 3.8.— Let X be an adapted cadlag process. Assume that there is a localizing
sequence {7,} of stopping times such that X7 is a semimartingale (respectively
a special semimartingale) for every n. Then X is a semimartingale (respectively a
special semimartingale).

PROOF.— Assume first that all X”~ are semimartingales. By the definition, for every
n, there are M"™ € .#\,. and A™ € ¥ such that

X = Xog+ M™+ A"

Define processes M and A as the results of “gluing” from {7}, }, {M"} and {7}, },
{A"}, respectively; then M € #j,. and A € V. It follows from the definition
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of “gluing” that Xo + M + A is a result of “gluing” from {7},}, {X*"}. Hence,
Xo+ M™ + AT» and X7~ are indistinguishable for every n, i.e., Xo + M + A and
X are indistinguishable.

The case of special semimartingales may be considered similarly (and even simpler
since we can use the uniqueness of the canonical decomposition). An alternative proof
is to use that X is a semimartingale, as we have just proved. So, it is enough to check
any of statements (4)—(6) in theorem 3.6, which follow from <7} = (2 O

loc)loc'

Let X be a semimartingale. Let us take two decompositions X of form [3.7]:
X=Xo+M+A=Xo+ M +A , MM € Mo, A,A" € ¥.Then M — M’ =
A —Ae Mo.NYV, hence M — M' € ///{ic by lemma 2.24, hence (M — M')¢ = 0,
ie., M = M'®. Thus, the process M ¢, where M is taken from a decomposition [3.7],
is the same (up to an evanescent set) for any choice of a decomposition. This makes
the next definition correct.

DEFINITION 3.6.— A continuous local martingale, denoted by X°¢, is called the
continuous martingale component of a semimartingale X if X¢ = M€ for every M
satisfying [3.7].

The continuous martingale component X ¢ should not be confused with the
continuous process X — Zo<s<- A X, which is well defined, e.g., if X € 7.

EXERCISE 3.7.— Show that, if X is a continuous semimartingale and X°¢ = 0, then
X — X is indistinguishable with a process with finite variation.

DEFINITION 3.7.— The quadratic variation of a semimartingale X is the increasing
process defined by

[X, X] = (X, X% + S((AX)?).

The quadratic covariation of semimartingales X and Y is the process with finite
variation defined by

[X,Y]:= (XY 4+ S(AXAY).
The correctness of this definition follows from lemma 3.2.

It is clear that, for local martingales, this definition coincides with definition 2.25.
Let us also note that, if M is a local martingale and [M, M| = 0, then M — My = 0,
while, for a semimartingale X, [X, X| = 0 means that X — X, is indistinguishable
with a continuous process with finite variation.

As in the case of local martingales, [X, Y] is symmetric and bilinear, [X,Y7T] =
[X,Y]T for every stopping time 7" and every X,Y € .#. Also, the Kunita—Watanabe
inequalities [2.54] and [2.56] remain true.
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We now turn to the definition of a stochastic integral with respect to
semimartingales. The definition in the general case will be given in section 3.4, and
here we consider the case when an integrand H is a locally bounded predictable
process, which is sufficient to formulate Itd’s formula. In this section, there are
integrals of three different types: the pathwise Lebesgue—Stieltjes integral defined in
theorem 2.11, the stochastic integral with respect to local martingales, see
definition 3.3, and the stochastic integral with respect to semimartingales. But in all
cases and for all types of integrals, we will deal with locally bounded predictable
integrands in this section. Recall that, given a locally bounded predictable H, we
have H € Ly, (X) forevery X € ¥, H € L (X) for every X € .#oc, and in the

loc

case X € ¥ N Moc the pathwise Lebesgue—Stieltjes integral H ® X, and the
stochastic integral with respect to a local martingale H - X coincide
(theorem 3.5 (1)). This is the reason why the integrals of the first and second type are
denoted by the same symbol in this section: H - X. The same notation will be used in
this section for integrals of the third type, i.e. stochastic integrals with respect to
semimartingales. The reason is that it will follow directly from the definition that for
locally bounded predictable H, the integrals of the first and the third type are the
same if X € 7 , and the integrals of the second and third types coincide if
X € M.

The idea how to define the stochastic integral with respect to a semimartingale
is simple: we define H - X as H - M + H - A, where M and A are taken from a
decomposition [3.7]. The next lemma shows that this definition does not depend on
the choice of a decomposition. Let us note that H - M € #,. and H - A € ¥, so that
H-M+H -Aec.”.

LEMMA 3.3.—Let X be a semimartingale and H be a locally bounded predictable
process,

X=Xog+M+A=Xo+M +A, MM € Mo, AAcCY.
Then
H-M+H-A=H -M +H- A
PROOF.—Since M — M' = A" — A€ MocNV,
H- M-M)=H-(A-A)
by theorem 3.5 (1). a

DEFINITION 3.8.— Let X be a semimartingale and H be a locally bounded predictable
process. The stochastic integral of H with respect to X is a semimartingale, denoted
by H - X, such that, up to an evanescent set,

H- X=H - M+H-A

for every M and A satisfying [3.7].
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In the following propositions, we study the basic properties of the stochastic
integral that has just been defined.

PROPOSITION 3.8.— Let X be a special semimartingale and H be a locally bounded
predictable process. Then H - X is a special semimartingale with the canonical
decomposition:

H- X=H -M+H-A,
where X = Xy + M + A is the canonical decomposition of X.

PROOF.— We have H - M € #\o., H- A € ¥, and the process H - A is predictable
by theorem 2.11. a

PROPOSITION 3.9.— Let X, Y € ., and let H and K be locally bounded predictable
processes, «, 3 € R. Then:

H-(aX+pY)=a(H-X)+5(H-Y),
(aH + BK)- X = a(H - X) + B(K - X).

PROOF.— The assertion follows from definition 3.8 and the corresponding properties
of the stochastic integral with respect to local martingales (propositions 3.4 and 3.5)
and the Lebesgue—Stieltjes integral (theorem 2.12). a

PROPOSITION 3.10.—Let X be a semimartingale and H be a locally bounded
predictable process. Then (H - X)¢ = H - X°©.

PROOF.— The assertion follows from definitions 3.8 and 3.6 and proposition 3.3. O

PROPOSITION 3.11.— Let X be a semimartingale, H be a locally bounded predictable
process and 7" be a stopping time. Then

(H-X)"=H-X"=(Hljo) - X.

PROOF.— The assertion follows from definition 3.8 and the corresponding properties
of the stochastic integral with respect to local martingales (propositions 3.6) and the
Lebesgue—Stieltjes integral (theorem 2.12). ]

PROPOSITION 3.12.—Let X be a semimartingale and H be a locally bounded
predictable process. Then

A(H - X) = HAX.
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PROOF.— The assertion follows from definition 3.8 and the corresponding properties
of the stochastic integral with respect to local martingales (definition 3.3) and the
Lebesgue—Stieltjes integral (theorem 2.12). O

PROPOSITION 3.13.—Let X be a semimartingale and /I be a locally bounded
predictable process. Then for every semimartingale Y':

[H-X,Y]=H-[X,Y].

PROPOSITION 3.14.— Let X be a semimartingale, H and K be two locally bounded
predictable processes. Then, K - (H - X) = (KH) - X.

EXERCISE 3.8.— Prove propositions 3.13 and 3.14.

THEOREM 3.9.— Let X be a semimartingale and {H"} a sequence of predictable
processes, which converges as n — oo for all ¢t and w to a process H. Assume also
that |[H™| < K for all n, where K is a locally bounded predictable process. Then

supg, [H" - X — H - X L 0asn — oo forevery t € R..

PROOF.— It is enough to consider two cases separately: X = M € Mo and X =
A € ¥ .1In the second case, the proof is simple: for almost all w,

t
sup|[H" - A, — H - A,| < / \H™ — H,|d Var (A)s — 0
0

s<t

by the Lebesgue dominated convergence theorem, because a trajectory K.(w) is
bounded on 0, ¢] for almost all w (by a constant depending on w).

Let now M € .#,. be given. We take a localizing sequence {7} such that
E[M,M]lT{? < oo and |K|ljp7,;] < Cn, < oo. By Davis’ inequality and
theorem 3.4,

E sup |Hn - M 7H'Ms| < CE[(Hn 7H)'M7 (Hn 7H) M];{,Q

s<Tp
n 2 1/2
= C’E((H — H)*-[M, M]T) .
Applying twice the dominated convergence theorem, we first obtain (H™ — H)? -
[M, M)z, — 0 as., and, second, that the right-hand side of the previous formula
tends to 0. In particular,

sup |H" - M, — H - M| -5 0.

s<Th
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It remains to note that:

P(sup|H"-Ms “H-M,| > 5)

s<t

<P(sup \H"-MS—H-MS|>5)+P(Tn<t). O

s<Ty

We now turn to the most fundamental result of stochastic calculus, Itd’s formula,
which is given without the proof. We say that a process X = (X!, ..., X9) with

values in R is a d-dimensional semimartingale if all components X', ..., X9 are
semimartingales.
THEOREM 3.10 (Itd’s formula).—Let X = (X',...,X%) be a d-dimensional

semimartingale, and let F' be a twice continuously differentiable function from R¢ to
R. Then F(X) is a semimartingale and

d d 9
F(X) = F(Xo) + Y 98 (x ) Z O (X)) ()
i=1 v 190
d
4 S(F(X) _ (X)) - Z gi (X )AXi>.

Let us discuss the contents of Itd’s formula in detail. Equality of the left and right
sides is understood, of course, up to an evanescent set. On the left side, we have a
real-valued adapted process F'(X). Since F' is continuous, its paths are cadlag. On
the right side, we have the sum of four terms. The first term is simply the value of

the process F'(X) at time 0. Further, for each i, Y := &£ - (X) is an adapted cadlag

process (for the same reasons as before). Therefore, Yj = gf (X_) is a predictable

locally bounded (and left-continuous) process, which is integrated with respect to the
semimartingale X in the second term. In particular, by proposition 3.8, the second
term on the right is a special semimartingale if these are all X*. Similarly, % (X-)
is a predictable locally bounded (and left-continuous) process, which is integrated with
respect to the continuous process with finite variation ((X*)¢, (X7)¢). Therefore, the
third term is a continuous process with finite variation. Let us also note that here we
deal with the Lebesgue—Stieltjes integral, and the predictability of the integrand does
not play any role; in particular, the process X_ in the integrand can be replaced by
X without changing the value of the integral because we integrate with respect to a
continuous process. It remains to analyze the fourth term on the right. First, we show
that it is well defined. Let ¢ € R.. Consider the trajectory X.(w) on the interval [0, ]
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for every w. Since it is cadlag, it does not come out of some compact K = K (w,t).
Denote:

C(w,t) == sup sup
) zEK (w,t) i,j arlax]

@)

It follows from Taylor’s formula for functions of several variables that, for s < ¢,

F(X() ~ P(Xo () - ng (X (w))AXz<w>\
d d

w)[[AX] (w)] € == (AX(w
4,5=1 i=1

Therefore, by lemma 3.2, the fourth term is well defined and is a process with
finite variation. Note that its jumps are exactly the same as you need in order to jumps
in the left and right sides of Itd’s formula match.

Since the right side of It6’s formula is a semimartingale, the left side is a
semimartingale, too, as the theorem asserts. Thus, the class of semimartingales is
closed with respect to a wide class of transformations. Note also that if all X are
special semimartingales, then F(X) is a special semimartingale if and only if the
fourth term on the right is.

It often happens that there is a need to apply 1t6’s formula for the function F' which
is twice continuously differentiable (and perhaps even defined) only on an open subset
of R?, while the process X takes values in this subset and, maybe, in its boundary.
We show how this can be done in a special case. Let dimension d = 1, so that X €
- and takes nonnegative values, Xy > 0, and the function F' is defined and twice
continuously differentiable on (0, co). For each natural n, denote by F}, some function
with values in R, which is defined and twice continuously differentiable on R and
coincides with F on [1/n, co[. We also put T;, := inf {¢: X; < 1/n}. Applying Itd’s
formula to £, and X, we obtain

Fu(X) = Fu(Xo) + Fy(X_)- X + ZFI(X) - (X, X°)

+S(Fo(X) = Fo(X-) — Fl(X_)AX).
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Let us now stop the processes in both sides of this formula at 7;,, and use
proposition 3.11:

Fo(X)™ = Fu(Xo)+H{F,(X )1jom, 1} - X + %{FA'(X—)B]]QT,L]]} (X4, X
+8({Fu(X) = Fu(X_) = Fi(X_)AX o).

Note that X > 1/n on [0,7,] and X_ > 1/n on ]0,T,]. hence,
Fo(X)Lory = F(X)lpmny F(X)lpeny = FI(X ),
F//(X)1jo,1,1 = F"(X_-)1j0,7,]- and we can rewrite the formula as

1
Fo(X)" = Fo(Xo) H{F' (X )por g } - X + S {F"(X)po g} - (X4, X
+5({Fu(X) = F(X_) = F'(X_)AX 03,1 ).

Moreover, assume now that either X > 0 everywhere or F' is defined at O (the
right-continuity of F at 0 is not required here). Then:

F(X)™ = F(Xo)+{F'(X)1jo7,7} - X + %{F”(X_)HHO,THH} (X X
+S({F(X) = F(X_) = F'(X )AX }ljor, ), [3.10]

which can be easily seen comparing this formula with the previous formula.
If X > 0and X_ > 0 everywhere, then T,, — oo, processes F'(X_) and
F"(X_) are locally founded, and we arrive at It6’s formula in the standard form:
1 . ve
F(X) = F(Xo) + F'(X_) - X + 5F"(X_) - (X, X°)

+S(F(X) - F(X_) - F'(X_)AX). [3.11]

If we impose only additional assumptions made before [3.10], then we can say, by
abuse of language, that It6’s formula [3.11] holds on the set [ J,,[0, 7},]. Essentially,
this means that [3.10] holds for every n.

EXERCISE 3.9.— Show that the process M™ in example 2.2 is a local martingale.

It6’s formula can be also generalized in some other directions. For example,
Tanaka—Meyer formula is a generalization of It6’s formula for convex F': R — R.
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Itd’s formula can be derived from its special case, the formula of integration by
parts [3.12]. We also deduce two versions of the formula of integration by parts, [3.13]
and [3.14], which are valid under additional assumptions.

THEOREM 3.11 (integration by parts).— Let X and Y be semimartingales. Then XY
is a semimartingale and

XY =XYo+Y - X+X_-Y+I[X,Y] [3.12]
IfY € ¥, then [X,Y] = (AX) " Y and

XY=Y_ -X+X'Y. [3.13]
IfY € 7 is predictable, then [X,Y] = (AY) - X and

XY=Y - X+X_.Y. [3.14]

PROOF.— Applying 1td’s formula with F'(z,y) = xy, we obtain that XY is a
semimartingale and

XY = XoVo+V_ - X+ X_ Y + (X, Y°)
+S(XY — X_Y_ —Y_AX — X_AY)
= XoYo+Y. - X +X_-Y 4+ (XY + S(AXAY),

i.e. [3.12] holds.

IfY € ¥, then Y°¢ = 0, hence,
[X,Y] = S(AXAY) = (AX) Y.

Now let Y € ¥ be predictable. Note that, in this case, the process Var (V) is
locally bounded, see the proof of lemma 2.5. Thus, Y is locally bounded and the
integrals (AY') - X and Y - X are well defined.

Consider the semimartingale Z = [X,Y] — (AY') - X. Itis clear that Zy = 0 and
Z is continuous. By corollary 3.8, Z is a special semimartingale, and the processes
M € M. and A € ¥ in its canonical decomposition Z = M + A are continuous.
Further,

M=2°=[X,Y]°- ((AY) - X)" = —(AY) - X,
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hence

<Ma M> = (AY)z ! <X67XC> =0,
because (X ¢, X¢) is continuous, the integrand (AY)?2, for every w, does not equal
to zero in at most countable set, and we deal with the pathwise Lebesgue—Stieltjes
integral. Hence, M = 0 and Z is a continuous process with finite variation.

Put H := T ay—o}- Then H is a bounded predictable process and the sets
{t: AH;(w) # 1} are at most countable (for every w). Therefore, the
Lebesgue—Stieltjes integral H - Z is indistinguishable with Z. However, Y¢ = 0,
hence [X,Y] = S(AXAY) and

H- [X,)Y]=SHAXAY)=0.

By proposition 3.14,

H-((AY)-X)=(HAY)-X =0.

Thus, Z = 0. O

COROLLARY 3.9.-If M € Mo, A € ¥, and A is predictable, then A - M € Mo
and

AM =A-M+M_-A

is the canonical decomposition of the special semimartingale AM.
EXERCISE 3.10.— Deduce Itd’s formula for an arbitrary polynomial F'(zq,...,x,)
from the formula [3.12] of integration by parts.
3.3. Stochastic exponential
Let us consider the equation:
Z=14+27Z_-X (3.15]
with a given semimartingale X and an unknown process Z, which is assumed to

belong to the class of adapted cadlag processes (which guarantees that the stochastic
integral is well defined). Equation [3.15] is usually written in the symbolic form

A7 = Z_dX, Zy=1,
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and is said to be a stochastic differential equation, though, essentially, [3.15] is a
stochastic integral equation. Similarly to the ordinary differential equation dz/dx =
z, its solution is called the stochastic exponential (or Doléans exponential) of the
semimartingale X.

Before we state and prove the main result of this section, we recall how the infinite

product is defined. If p1, po.. .., pn,. ..1is a sequence of real numbers, then the symbol
oo
pl.p2.....pn....: Hpn
n=1

is called an infinite product. If there exists

n
lim H Dk,
n—oo
k=1

then this limit is called the value of the infinite product. Moreover, if the limit is finite
and is different from 0, then we say that the infinite product converges. It is necessary
for the convergence of the infinite product that p,, # 0 for all n and lim,, p,, = 1.
Since discarding a finite number of (nonzero) terms in the product does not affect
the convergence, it is sufficient to consider the question of the convergence of infinite
products when all p,, > 0. Under this condition, the infinite product converges if and
only if the infinite series Y-, log p,, converges, and then

H Dn = eXp(Z log pn).
n=1 n=1

If, moreover, the series > -, log p,, converges absolutely, then we say that the
product [ | p,, converges absolutely. If a product converges absolutely, then all its
rearrangements converge and to the same limit.

It is more convenient for us to change this terminology and to use the following
definition: an infinite product [, p,, is called convergent absolutely if p, < 0
only for a finite number of n and the product [[,,. ., >0 Pn converges absolutely in the
previous sense. It is clear that this definition guarantees that the value of the product
HSLO=1 P, is defined and finite and does not change under any rearrangement of factors.
However, it may be equal to 0, which happens if and only if one of factors is 0.

LEMMA 3.4.— Let X be a semimartingale. Then, for almost all w, the infinite product

[[a+ax,)e2x

s<t
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converges absolutely for all £ € Ry. There exists a process V such that 1 = 1,
V —1¢€ 749 and, foreveryt € R,

V=[] +AaX)e 2% as. [3.16]
s<t
If the set {AX = —1} is evanescent, there is a version of V' which does not

vanish. If AX > —1, then we can choose a version of V, whose all trajectories are
nonincreasing.

PROOF.— Since the set {s < t: |[AX (w)| > 1/2} is finite for all w and ¢ € R, the
process

V! =[]0+ AX 0 qax, s1/0y)e” dFe 0axe1202)

s<t
is well defined and adapted, V; = 1, with all trajectories being piecewise constant

(with a finite number of pieces on compact intervals) and right-continuous. Hence,
V' —1 € 7% For a given t, the absolute convergence of the product

[I a+ax)es*

s<t: |AX,|<1/2

is equivalent to the absolute convergence of the series

> {log(1+AX,) - AX,},

s<t: |AX,|<1/2
which holds, in view of the inequality —z? < log (1 +z) —2 <0, -1/2 <2 < 1/2,

for w such that the series ), (AX)? converges, i.e. for almost all w by lemma 3.2.
Therefore, we can define the process

B = S{log (1+ AX,Iax.wi<1/2p) = AXsLgjax,w)<i/zy} € ¥4
moreover, we can assume that —B € ¥+, Now put
V=V'e"
It is clear that [3.16] holds. Note that, by Itd’s formula,

eB—1=eP B+ 8P —eB —eB-AB) = S(eP —eB) e ¥
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where we have used that e~ - B = S(e®- AB) due to B € <. Similarly, applying
the formula of integration by parts, we get V'e? — 1 € #9. The last two assertions
are clear from the construction. a

Also, we prove the uniqueness of a solution for a deterministic equation.

LEMMA 3.5.— Let a function f: Ry — R be right-continuous everywhere on R,
f(0) = 0, and vary(¢) finite for all t € R, zp € R. In the class of cadlag functions
z: Ry — R, the equation

t

z(t) = 20 + /z(s—) df(s), teRy,

0

has no more than one solution.

PROOF.— Let z be the difference of two solutions. Then
t
A1) = /z(s—) df(s), teR,.
0

Put g(t) := vary(¢). Note that, by Itd’s formula,

g()" :n/g(s—)"‘ldg(S) + > (9(s)™ = g(s=)" = ng(s—)"""(g(s) —g(s—))),

0 s<t

the summands being nonnegative. Due to this and putting K := sup,, |2(s)], we
obtain, consecutively, for r € [0, t],

T

()| < / |2(s—)| dg(s) < Kg(r),

Continuing, we get |z(r)| < Kg(r)"/n!. Since g(r)"/n! — 0 as n — oo, the
claim follows. O
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THEOREM 3.12.— Let X be a semimartingale. The equation [3.15] has a unique (up
to an evanescent set) solution in the class of adapted cadlag processes. This solution
is a semimartingale, denoted by &(X), is given by:

éa(X)=eXp(X—Xo—%<XC7XC>)V, [3.17]

where V is defined in lemma 3.4.

PROOF.—PutY = X — Xy — $(X¢ X°), F(y,v) = e¥v, Z := F(Y,V). By It0’s
formula, Z is a semimartingale. Since V¢ = 0 and Z; = 1, we have

1
Z=14Z Y+~ V42 (YY) +8(Z- 2 -2 AY —e'=AV).

Since Y¢ = X¢, the sum of the first integral (Z_ - Y') and the third integral
(AZ_ (v, Y©))is Z_ - X. Further, since V € 7%, the second integral ¥~ - V' is
S(e¥Y= AV), so that it can be canceled with the corresponding term in the last sum.
Finally, using [3.16], we get

Z=e"V =AYV (1 4+ AX)e 28X
=7 AV (1+AX)e ™™ = Z_(1+AX),

where Z — Z_ — Z_AY = 0. Resuming, we obtain Z = 1+ Z_ - X, ie. Z
satisfies [3.15].

Assume now that an adapted cadlag process Zisa solution to equation [3.15].
Then Z is a semimartingale. Put V = e~YZ = F(-Y, Z), where Y and F are the
same as before. Since Zy = 1, by Itd’s formula,

V=1-V_.Y4e . Z+ %17, (Ye Y —e Y- (Y©, Z°)
+S(V - Vo + VLAY — e ¥-AZ).
Using propositions 3.14, 3.10 and 3.12, we obtain
e V- Z=(Y2Z)-X=V_-X,

e Y- (YO, Z) =e Y (X Z_ XY= (e Z_) - (X, X)) =V_ - (X, X°),

e Y-AZ =eY-7 AX =V_AX.
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We conclude that
V —1=5(AV),

ie. V-1 € 74 (more precisely, there is a version of 1% having this property). Next,
V=eYZ=eYe?¥Z (1+AX)="V_e?X(1+ AX). Let us define the
process

A= S(e (14 AX)-1).

Since e %(1 + ) — 1 ~ 2% as x — 0, it is easy to see that this process is well
defined and, hence, belongs to ¥4 So we have

V-1=V_- A4,

because the processes on the left and on the right belong to 7 4 and their jumps
coincide. It follows from lemma 3.5 that V' is determined uniquely (up to an
evanescent set). Therefore, Z = e¥ V is determined uniquely. a

The following properties of the stochastic exponential follow from the definition,
i.e. from equation [3.15].

PROPOSITION 3.15.— Let X € .#, (respectively X € ¥, respectively X € .7,
respectively X be predictable). Then, &(X) € #o. (respectively &(X) —1 € ¥,
respectively X € .7, respectively & (X) is predictable).

PROPOSITION 3.16.—Let X be a semimartingale, £ a .%j;-measurable random
variable. The equation

Z=¢+7_-X

has a unique (up to an evanescent set) solution in the class of adapted cadlag processes.
This solution is the semimartingale £&'(X).

EXERCISE 3.11.- Prove proposition 3.16.
HINT.— To prove the uniqueness, consider the difference of two solutions.

The following two propositions follow from lemma 3.4 and [3.17]. All relations
between processes are understood up to an evanescent set.

PROPOSITION 3.17.— Let X be a semimartingale and AX > —1. Then &(X) > 0
and £(X)_ > 0.



154  Stochastic Calculus for Quantitative Finance

PROPOSITION 3.18.— Let X be a semimartingale, T' := inf {¢t: AX;, = —1}. Then
&(X) # 0onthe interval [0, T, and &(X)_ # 0 on the interval [0, 7], and &(X) =
0 on [T, co[.

Unlike the usual exponential function, the stochastic exponential of a sum, in

general, is not the product of the stochastic exponentials. However, the following
statement holds.

THEOREM 3.13 (Yor’s formula).— Let X and Y be semimartingales. Then
EX)EY)=EX+Y +[X,Y]).
PROOF.— By the formula [3.12] of integration by parts and proposition 3.14, we get

EX)EY)=1+EY)- - EX)+EX)- - &Y )+ [E(X),E(Y)]

=14+ (EX)-EY)-) - X+ (&(X)_E(Y)-) Y
+(EX)-E(Y)-) - [X,Y]
=1+ (&(X)_&(Y)-) (X +Y + [X,Y]). O

It is often useful to represent a given process Z in the form Zy&'(X), i.e. to
express it as the stochastic exponential of another process (usually, if Z is
nonnegative or strictly positive). Proposition 3.18 says that this is possible not for
every semimartingale Z. We consider only the case where neither Z nor Z_ vanish.

THEOREM 3.14.— Let Z be a semimartingale such that the processes Z and Z_ do not
vanish. Then there exists the process:

1
X=—.Z 3.18
7 5 (3.18]

denoted by Zog Z which is called the stochastic logarithm of Z, and X is a unique
semimartingale such that

Z = Zy6(X) and X, =0.

Moreover, AX # —1 and

Z 1 AZ AZ
fogZzlog‘Z—O‘—&-ﬁ-(Zc,ZC) <log‘1+— _7> [3.19]
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PROOF.— Put T, := inf {¢: |Z;] < 1/n}. Since Z and Z_ do not vanish, we have
T, 1 oo. Since |Z_| > 1/n on ]0,T,], the process 1/Z_ is locally bounded and
the process X in [3.18] is well defined. Moreover, AX = AZ/Z_ # —1. Using
proposition 3.14, we get

7 -X=27-2,

ie. Z = Zy&(X) due to proposition 3.16. If X is another semimartingale satisfying
this relation and Xy = 0, then Z = Zy + Z_ - X, and it follows from proposition 3.14
that

é.zz(z_z—{).xzx.

In order to prove [3.19], we can use Itd’s formula with a twice continuously
differentiable function F;, such that F,(z) = log |z| on the set {x € Z: || = 1/n}.
Using the arguments preceding [3.10], we can prove [3.19] on the stochastic interval
[0, T,] for every n. O

EXERCISE 3.12.— Give a full proof of [3.19].

3.4. Stochastic integrals with respect to semimartingales: the general case

In this section, we will study stochastic integrals with respect to semimartingales
in the general case. That is, integrands are predictable but not locally bounded as in
section 3.2. In order to avoid any misunderstandings and for clarity, we will denote
the pathwise Lebesgue—Stieltjes integral defined in theorem 2.11 by H * X and the
stochastic integral with respect to local martingales, see definition 3.3, by H " X the
symbol H - X is reserved for stochastic integrals with respect to semimartingales.

The idea how to define the integral is the same: to take a decomposition [3.7] and

to define H - X as H ~ M + H ; A, Of course, we should assume that
H € L. .(M) N Lyy(A). The main difficulty of this approach is that the class
Li (M) N Ly, (A) depends on the choice of M and A in [3.7]. Indeed, if X is a
semimartingale from .#},. N ¥, we may consider [3.7] with M = X and A = 0 (the
canonical decomposition) or, conversely, M = 0 and A = X. In the first case,
Li (M) N Lya(A) = Ll .(X), and, in the second case,
Li (M) N Lyar(A) = Lyar(X). However, we know from examples 2.3 and 3.2 that
any of these classes does not contain another one, in general. The first of these
examples also shows that if X € .7, then the class L (M) N Ly (A) with

arbitrary M and A satisfying [3.7] may contain elements which are not in the class
with M and A from the canonical decomposition.
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DEFINITION 3.9.— Let X be a semimartingale. A predictable process H is called X-
integrable, if there is a decomposition X = Xo+ M + A, M € Mo, A € ¥, such
that H € L (M) N Lyar(A). In this case, the stochastic integral H - X is defined by

loc
H-X:=H"M+H"A
The class of all X -integrable processes is denoted by L(X).

It is clear that, if X € . and H € L(X), then H - X is a semimartingale and
H X,=0.

Obviously, any locally bounded predictable process X belongs to L(X) for every
X, and definition 3.8 is a special case of definition 3.9.

PROPOSITION 3.19.— Definition 3.9 of the stochastic integral is correct.

PROOF.—Let X = Xg+ M+ A= Xog+ M + A" with M, M’ € M., A, A €V,
H e Ll (M)NL{L . (M")NLyar (A)NLyar (A'). Then M —M' = A'— A € MocNY,

H e LL (M — M) Lya (A’ — A), and by theorem 3.5 (1),

loc

S

H"(M—-M)=H"(A —A).
Therefore,
H"M+H A=H" M +H"A. o

The next proposition follows trivially from definition 3.9 and proposition 3.19. It
shows that definition 3.9 of the stochastic integral with respect to semimartingales
includes the definition of the pathwise Lebesgue—Stieltjes integral from theorem 2.11
and the definition of the stochastic integral with respect to local martingales, see
definition 3.3, as special cases.

PROPOSITION 3.20.—
1) Let X € ¥. Then Ly, (X) C L(X) and

H?X=H-X forevery H € Ly (X).

2) Let X € .#c. Then L.

loc

(X) C L(X) and
H™X=H-X forevery H € L}, (X).

In view of this proposition, there is no need to use symbols Tand ™.
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Now we state properties of the integral introduced in definition 3.9 which follow
easily from the definition and from corresponding properties of the stochastic integral
with respect to local martingales and the pathwise Lebesgue—Stieltjes integral.

PROPOSITION 3.21.-Let XY € ¥ H € L(X)NL(Y), o,8 € R. Then, H €
L(aX + BY) and

H-(aX +8Y)=a(H X)+B(H-Y).

PROPOSITION 3.22.—Let X be a semimartingale and H € L(X). Then,
He Ll (X¢and(H -X)°=H-X°.

loc

PROPOSITION 3.23.— Let X be a semimartingale, H € L(X), and let T be a stopping
time. Then, H € L(X™), Hlyo ) € L(X) and

(H-X)"=H-X" = (Hljr) X

PROPOSITION 3.24.— Let X be a semimartingale and H € L(X). Then

A(H - X) = HAX.

PROPOSITION 3.25.— Let X be a semimartingale and H € L(X). Then, for every
semimartingale Y, we have H € L., ([X,Y]) and

[H-X,Y]=H-[X,Y].
EXERCISE 3.13.— Prove propositions 3.21-3.25.

As regards the linearity of H - X in H and the “associative” property K- (H-X) =
(KH) - X, some preparation is needed.

We have already observed that, for a special semimartingale X with the canonical
decomposition X = X+ M + A, the class L, (M) N Ly, (A) may be more narrow
than L(X) as in example 2.3. The following important theorem characterizes this

situation and generalizes statement (3) in theorem 3.5.

THEOREM 3.15.—-Let X be a special semimartingale with the canonical
decomposition X = Xo+ M + A and H € L(X). A necessary and sufficient
condition for H - X to be a special semimartingale is that H € L] (M) N Ly, (A).

Note that if X is a predictable semimartingale and H € L(X), then H - X is also
predictable by proposition 3.24. By corollary 3.8, X and H - X are special
semimartingales. Therefore, it holds



158  Stochastic Calculus for Quantitative Finance

COROLLARY 3.10.—

1) Let X be a predictable semimartingale with the canonical decomposition X =
Xo+ M + A.Then, L(X) = LL (M) N Lya (A).

loc
2) Let M be a continuous local martingale. Then, L(M) = L{. .(M).
3) Let A be a predictable process with finite variation. Then, L(A) = Ly, (A).

Before we turn to the proof of theorem 3.15, we state and prove an intermediate
version of the “associative” property with a locally bounded K.

LEMMA 3.6.—Let X be a semimartingale, H € L(X), K a locally bounded
predictable process. Then KH € L(X)and K - (H - X) = (KH) - X.

PROOF.— Let a decomposition X = Xg+ M + A, M € Moc, A € V', be such that
H € LL (M) N Lya(A). Note that H - M € Mo and K € LL _(H - M) because

loc loc

K is locally bounded. Hence, by proposition 3.7,
KHeLiL.(M) and K-(H-M)=(KH)-M.
Similarly, by theorem 2.12,
KH € Lyyy(A) and K- -(H-A)=(KH)-A.
Therefore, KH € L(X) and
(KH)-X=(KH)-M+ (KH)-A
=K-(H-M)+K-(H-A)=K-(H-X). m|

PROOF OF THEOREM 3.15.— The sufficiency is obvious. Indeed, H - M € ., for
H € L (M) by definition 3.3 and the process H - A belongs to ¥ and is predictable

loc

for H € Ly, (A) by theorem 2.12.

Let us prove the necessity. Let H - X be a special semimartingale. Write its
canonical decomposition as

H-X=N+B,
where N € M., B € ¥, and B is predictable. Put

1

Ki=——-,
1+ |H|

1
J.f?.
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It is obvious that K and J are strictly positive predictable processes, K and K H
are bounded.

By proposition 3.8, (KH) - X and K - (H - X) are special semimartingales with
the canonical decompositions

(KH)-X = (KH)-M + (KH) - A,
K- (H-X)=K-N+K-B.

However, by lemma 3.6, (KH) - X = K - (H - X). Since the canonical
decomposition is unique, we have:

(KH)-M=K-N, (KH)-A=K-B. [3.20]

Since JK =1, we have JK € L{ (N). By proposition 3.7, we get J € L (K -

loc

N). Taking into account the first equality in [3.20], we have J € L\ ((KH) - M).

loc
Applying proposition 3.7 once again, we obtain H = JKH € L] (M).
Similarly, J € Lya (K - B), hence the second equality in [3.20] implies J €
Loy ((KH) - A), from which H = JKH € Ly, (A) follows. a

COROLLARY 3.11.-Let M € M. and H € L(M). A necessary and sufficient
condition for H - M to be a local martingale is that H € L. .(M).

loc

PROOF.— The sufficiency follows from definition 3.3, and the necessity comes from
theorem 3.15. O

In the case where X is a predictable process with finite variation, the assertion of
theorem 3.15 reduces to corollary 3.10 (3). But we can prove the following interesting
result for processes with finite variation that are not necessarily predictable, which
generalizes statement (2) in theorem 3.5.

THEOREM 3.16.— Let A € ¥ and H € L(A). Itis necessary and sufficient for H-A €
¥ that H € Lya (A).

PROOF.— Again, it is enough to check the necessity. Let A € ¥, H € L(A) and
H - A e ¥. It follows from the assumption H € L(A) that there is a decomposition
A= M + Bsuchthat M € #,., B€ ¥ and H € Llloc(M) N Lyar(B). Then,

H-A=H -M+H-B.

Hence, M = A—Be ¥ andH-M =H-A— H-B € ¥.Bytheorem 3.5 (2),
H € Ly, (M), and we obtain H € Ly, (M + B) = Lyar(4). ]
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Letuscallaset D C QxR discrete if, for almost all w, the set {s € Ry : (w, s) €
D, s < t}is finite for all t € R,.. If X is a cadlag process, then, for every a > 0, the
set {|AX]| > a} is discrete.

Let X be an adapted cadlag process and D an optional discrete set. Then the
process S(AX1p) € ¥ is well defined. Put XP := X — S(AX1p). Since
AXP = Liaxr,)\pAX, by theorem 3.7, if X is a semimartingale, then XPisa
special semimartingale provided

D D {|AX]| > 1}.
LEMMA 3.7.— Let X be a semimartingale and H € L(X).
1) The set

Dy := {|AX| > 1} U {|{HAX]| > 1}

is an optional discrete set.

2) Let D be an optional discrete set containing Dy, X” = Xq + M + B
the canonical decomposition of the special semimartingale X?. Put A := B +
S(AX1p). Then, H € L. (M) N Ly (A). Moreover, (H - X)? is a special
semimartingale, and H - M is the local martingale in its canonical decomposition.

Thus, the lemma allows us to construct explicitly a decomposition X = Xy +
M+ A M € Moe, A € ¥, such that H € L (M) N Ly, (A) (assuming that
H e L(X)).

PROOF.—PutY := H - X.

1) By proposition 3.24, {| HAX| > 1} = {JAY| > 1} up to an evanescent set.
The claim follows.

2) Since the set D is discrete and AY = HAX, it is evident that H €
Lvar (S(AX1p)) and H - S(AX1p) = S(AY 1p). Therefore, by proposition 3.21,
H € L(XP)and H- XP = YP. Since D O Dy, XP and Y are special
semimartingales. Theorem 3.15 allows us to conclude that H € L{ (M) N Lya,(B).

Moreover, YP = H .- M + H - B is the canonical decomposition of YL, That
H € L, (A) follows from the definition of A. O

Now we are in a position to prove the remaining properties of the stochastic
integral.
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PROPOSITION 3.26.— Let X be a semimartingale, H, K € L(X), o, € R. Then
aH + K € L(X) and

(aH+BK) - X =a(H-X)+ B(K - X).
PROOF.— Applying lemma 3.7 with
D :={|]AX| > 1} U{|HAX| > 1} U{|KAX| > 1},

we get a decomposition X = Xog+ M + A, M € Mo, A € ¥, such that H, K €
LL (M) N Lya(A). Now, using the linearity of stochastic integrals with respect to

loc
local martingales and Lebesgue—Stieltjes integrals, we obtain

aH + BK € Li, (M) N Ly (A),
(aH+BK)-M=a(H-M)+ B(K - M),
(aH+BK)-A=a(H -A)+ B(K - A).

The claim follows. O

PROPOSITION 3.27.— Let X be a semimartingale, H € L(X), and let K be a
predictable process. Then

KeLH-X)e KH ¢ L(X),

and, in this case,
K- (H X)=(KH)- X.

PROOF.— Assume that K € L(H - X).Denote Y := H - X, Z := K - Y, and put
D :={|]AX| > 1} U{|HAX| > 1} U{|KHAX| > 1}.

Since {|HAX| > 1} = {JAY]| > 1} and {|KHAX| > 1} = {|KAY|
>1} = {|AZ]|>1} (up to an evanescent set), D is an optional discrete set.
Therefore. we can apply lemma 3.7 to the pairs (X, H) and (Y, K) with this set D
and to get decompositions X = Xg+ M + AandY = N+ B, M,N € Mo,
A,B € ¥, for which H € L], (M) N Lya(A), K € Ll .(N) N Lyar (B). Moreover,
by lemma 3.7, M is the local martingale in the canonical decomposition of the
special semimartingale X, N is the local martingale in the canonical

decomposition of the special semimartingale Y, and N = H - M. Hence,
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B = H - A. It follows from the associative properties of stochastic integrals with
respect to local martingales and Lebesgue—Stieltjes integrals that

KH € L, (M) N Lyay (A),
K-N=K-(H-M)=(KH)-M,
K-B=K-(H-A) = (KH)- A.

This implies KH € L(X)and K - (H- X) = (KH) - X.

Assume that K H € L(X). Under this assumption, the set D introduced above is
also discrete. Thus, by lemma 3.7, if X = Xy + M + A is the same decomposition,
we have H € L{ (M) N Ly (A) and KH € L] (M) N Lyay(A). Hence, K €

loc
Li (H-M)N Ly (H - A), where K € L(H - X). O

3.5. o-martingales

DEFINITION 3.10.— A semimartingale X is called a o-martingale if there is a
sequence of predictable sets D,, suchthat D1 C---C D,, C ..., Un D, =0 xRy
(up to an evanescent set), and the processes 1p, - X are uniformly integrable
martingales for all n. The class of all o-martingales will be denoted by ..

It is clear that any local martingale is a o-martingale: put D,, = 1o,7,], Where
{T},} is a localizing sequence from the definition of a local martingale. Moreover,
as follows from the definition, X is a o-martingale if and only if X — X is a o-
martingale. On the other hand, our definition of a local martingale implies that X is
integrable. So, it is easy to construct examples of o-martingales X that are not local
martingales: just take a local martingale M and put X = & + M, where ¢ is non-
integrable .%y-measurable random variable. But there are also o-martingales X with
Xy = 0, which are not local martingales, see examples below.

It follows from the definition that the class of o-martingales is stable under
stopping and scalar multiplication. That this class is stable under addition is less
obvious.

THEOREM 3.17.—Let X be a semimartingale. The following statements are
equivalent:

1) there is a sequence of predictable sets D,, such that D; C --- C D,, C ...,
U,, Dn = ©Q x R, (up to an evanescent set) and 1p, - X € .4, for all n;

2) X is a o-martingale;
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3) there is a sequence of predictable sets D,, such that D; C --- C D, C ...,
U,Dn=QxRiandlp, - X € " for all n;

4) there is a process G € L(X) such that G # 0 identically and G - X € Aoc;
5) there is a process J € L(X) such that J > 0 identically and J - X € J#;
6) there are processes M € Ao and H € L(M) such that X = Xog + H - M;

7) there are processes N € 1 and K € L(N) such that K > 0 identically and
X=Xo+K-N.

PROOF.— Note that implications (3)=-(2)=-(1), (5)=-(4), (7)=-(6) are obvious. If (4)
holds, thenput M := G-X and H := 1/G.Then H € L(M)and H-M = X — X, by
proposition 3.27, i.e. (6) holds. Similar arguments show that (5) and (7) are equivalent.
Therefore, it is enough to prove implications (1)=-(3), (3)=-(5) and (6)=-(1).

We start with the last one. Let M € Ao, H € L(M)and X = Xy + H - M. Put
D,, := {|H| < n}, then D,, are predictable and increasing to {3 x R.. Moreover, by
proposition 3.27, for every n,

Lp, - X = Hlyu<ny - M,
and the process on the right is a local martingale because the integrand is bounded.

Now assume (1) and let us prove (3). Put M™ := 1p,_ - X. Since M"™ € Mo, by
theorem 2.7, for every n, there is a localizing sequence {T, , },en Of stopping times
such that (M™)T»» ¢ ' for all p. By lemma 2.1 (2) (with T,, = o0), there is a
localizing sequence {5, } of stopping times such that, for every n, S,, < T, ,, for
some p,,. Hence, (M™)5" € 1. Since S,, T o0 a.s., the set (2 x Ry) \ U,,(Dy N
[0,S,]) is evanescent (and predictable); we denote it by N. Now put C,, := (D, N
[0,S,]) U N. It is clear that the sets C,, are predictable and increasing to 2 x R.
Moreover, since IV is evanescent, by proposition 3.27, for every n,

lo, - X =1p,npo,s.] - X = Lo,s,1 - (Ip, - X) = Ljo,s,1 - M™ € A"
Finally, we prove implication (3)=(5). Put M" := 1p,_ - X; we have M"™ €

' for every n. Choose a sequence of numbers {a,} such that 0 < «,, < 1/2,
|| M| e < 277, and 11 < vy, /2 for all n. Put

J = ian]an.
n=1

It is clear that 0 < J < 1. In particular, J € L(X) and the integral Y := J - X €
.7 is defined. It remains to prove that Y is a martingale from 71,
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By proposition 3.27,

k 0
le~Y’:(Jle)gX::E:(%AHD”-X)4—< 3 an)nDk.X
n=1 n=k+1
k o0
= ZanM"+ ( Z an)Mk.
n=1 n=k+1

Since 0 < Y07, an < oy, the second term on the right converges to 0 in
At as k — 00. On the other hand, since the series Y v, ||M"|| s converges and
the space 7! is complete (theorem 2.6), the series Y | a, M™ converges in ¢,
Denote the sum of this series by N. Then, 1p, - Y — N in ' as k — co. In
particular,

sup |1p, - Ys — Ny i>O, k — oo.
seR

However, by theorem 3.9,

sup|lp, - Vs — Yi| 250, &k — oc.
s<t

for every t € R. Hence, trajectories of N and Y coincide on [0, ¢] with probability
one, for every t. Therefore, N and Y are indistinguishable, and Y € 57 L O

EXERCISE 3.14.— Prove that the sum of two o-martingales is a c-martingale.

The equivalence of statement (6) of the theorem to the definition of a o-martingale
allows us to provide an example of a o-martingale starting from 0, which is not a local
martingale, namely, the process X in example 2.3. Here is another example.

EXAMPLE 3.3.— Let there be given a complete probability space (2,.#,P) with
independent random variables &1, ..., &,, ... on it. We assume that

P(én = £n) =1/(2n), P& =0)=1-1/n"

Putt, = n/(n+1), % = c{&,...,&én,...: tn < t} V o{ A}, where A
consists of P-null sets from .#. By the Borel-Cantelli lemma, for almost all w,
&n(w) # 0 only for a finite number of n, and the series ) -, &, converges. For such
w, put

Xei= ) & teRy,

n: t,<t
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while, for other w, put X; = 0 for all t € R;. Obviously, X € ¥/, because all
trajectories are piecewise constant (with a finite number of pieces). Next, put
D,, := Q x ([0,%,] U [1,00[). Then 1p_ - X is, obviously, a bounded martingale.
Hence, X is a o-martingale.

Assume that X is a local martingale. Then, by lemma 2.6, X € 4, i.e.
A:= Var (X) is a locally integrable increasing process. Denote the compensator of
A by A. Then, for every n, Al» is the compensator of the process A'». Since for
almost all w,

Ar= Yl teRy,

k: k<n,tx<t

At is a process with independent increments on our stochastic basis. It follows
from exercise 2.6 that

An= Y EBlal, teRy.

ki k<n, tp<t

Hence, for every n,
~ ~ ~ "1
Az A, =Ap =3
k=1

Thus, A; = oo a.s. This contradiction shows that X is not a local martingale.

This example is especially interesting because X is a process with independent
increments (on the stochastic basis under consideration). In this connection, let us
mention the following fact (without proof): if a local martingale is a process with
independent increments, then it is a martingale (all the notions are with respect to the
same stochastic basis), see [SHI 02].

We know that the integral (in the sense of definition 3.9) with respect to a local
martingale need not be a local martingale, and the integral with respect to a process
with finite variation is not necessarily a process with finite variation. It turns out that
the integral with respect to a o-martingale is always a o-martingale.

THEOREM 3.18.— Let X € #, and H € L(X). Then H - X € A#,.

PROOF.— By theorem 3.17, X = X+ K - M, where M € .#),. and K € L(M). By
theorem 3.27, HK € L(M) and H - X = (HK) - M. Applying theorem 3.17 again,
weget H- - X € #,. O

THEOREM 3.19.— Let X be a o-martingale. The following statements are equivalent:
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1) X — X is a local martingale;

2) X is a special semimartingale.

PROOF.— Implication (1)=-(2) is obvious (and does not use the assumption that X
is a o-martingale). Let X be both a o-martingale and a special semimartingale. By
theorem 3.17, X = Xy + H - M, where M € #o. and H € L(M). Hence, H - M is
a special semimartingale, and, by theorem 3.15, H € L{ (M) and H - M € Mjpe. O

loc

In view of the above theorem, all conditions that are sufficient for a
semimartingale to be a special semimartingale (see theorems 3.6 and 3.7), are
sufficient for a o-martingale starting from zero to be a local martingale. We mention
only a few cases.

COROLLARY 3.12.— Let X be a o-martingale. Assume that X is locally bounded or
has bounded jumps. Then X — X, is a local martingale.

COROLLARY 3.13.— (1) X € .# if and only if X € .#, N (DL).
(2) X € . if and only if X € .#, N (D).

PROOF.— The assertions “only if”” are evident due to corollary 2.4. Let X € .#, N
(DL). Note that the random variable Xy is integrable. Put 7, := inf {¢t: |X;| >
n} An. Then X7. < n+ |Xr,|, while a random variable X7, is integrable because
X € (DL). Hence, (X — Xo)* € 4, hence X € .7, by theorem 3.6 and X € .

loc?

by theorem 3.19. We complete the proof by applying theorem 2.8. a

Let us remark that all sufficient conditions mentioned before corollary 3.12 are
“two-sided”, i.e. constrain equally, say, big positive jumps and big (in absolute value)
negative jumps. This is not surprising if we want to check that a semimartingale is a
special semimartingale. However, if we deal with a o-martingale, we can find “one-
sided” necessary and sufficient conditions.

THEOREM 3.20 (Ansel-Stricker).— Let X be a o-martingale, Xy = 0. Then, X is a
local martingale if and only if:

{(Ax)"} e o},

loc*

[3.21]

PROOF.— Since 0 < (AX)~ < |AX]|, the necessity follows from lemma 2.7.

Let us prove the sufficiency. Let X be a o-martingale, Xy = 0, and let [3.21] hold.
We start with a special case, where we can see a central idea of the proof. The general
case will be reduced to the special case.
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Namely, let X be represented as
X=H-M, MeMo.NYV, HELy(M), H>DO0.

Let M = B — C be the decomposition of M € ¥ from proposition 2.3. Since
M € o, (lemma 2.6), we have B, C' € %:C Their compensators are denoted by B

and 5 respectively. Since B — C' € .#)., we have B=C.
Next, Lyar (M) = Lyar(B) N Lyar(C) and
(AX)” =(HAM)” = H(AM)” = HAC = A(H - C).

Since H - C € ¥t and the process (H - C)_ is locally bounded, it follows from
[3.21] and the last relation that H - C' € 7 . theorem 2.21 (2) allows us to conclude

loc

that H - C € &fljc Hence, H - B ¢ ﬂ/ljc It follows from theorem 2.21 (3) that
H-B e &} Thus, H- M € Ao, hence, X = H - M € Mo (proposition 2.10
4)).

We now turn to the general case. By theorem 3.17, there are processes M € Ao
and H € L(M) such that H > 0 and X = H - M. By the definition of the stochastic
integral with respect to semimartingales, there is a decomposition M = My+ N + A,
N € Moe, A€V, suchthat H € L}, (N)N Ly, (A) and then X = H- N + H - A.
Then, obviously, A € Mo NV andY := H - A= X — H-N € .#,. Finally, for
every Y, we have [3.21]:

{(AY)"} = {(AX — HAN)"} < {(AX)"} + {(HAN)*} € a1,
where we have used the inequalities (z —y)~ <~ +y ™ for real z, y, relation [3.21]
(for X) and also relation (HAN)* € !, which follows from lemma 2.7 due to
the fact that HAN = A(H - N), and H - N € .. According to the special case
considered above, we have Y € AZjo.. Thus, X = H- N +Y € M. O

LEMMA 3.8.— Let X be an adapted cadlag process, Xy = 0. Then

{ax)) e o

loc — {X_}* € '!Z{I(;Lc'

PROOF.— Since X~ < X~ + (AX)~ and the process X_ is locally bounded,
implication = is obvious. Assume that {X 7}* € mfljc Put
T, = inf {t: X; > n} A S,, where {S,,} is a localizing sequence for { X ~ }* Since
X_ < non[0,7,], X —X_ > —X —nand (AX)” < X~ + n on this
stochastic interval. Hence,

n

({(AX)‘}*)T A
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{(AX)_}* e‘Q‘(lt—)i_c‘ o
Our final result includes theorems 3.19 and 3.20.

THEOREM 3.21.— Let X be a o-martingale. The following statements are equivalent:
1) X — X is a local martingale;
2) there is a special semimartingale Y such that AX > AY;

3) there is a special semimartingale Y such that X > Y.

PROOF.— Implications (1)=-(2) and (1)=-(3) are trivial. To prove the converse
implications, let us write the canonical decomposition of the special semimartingale
Y inthe formY =Y, + N + B, where N € Ao, B € ¥, and B is predictable. Put
M := X — Xy — N. Itis clear that M is a o-martingale with My = 0. In case (2),
AM > AB, where (AM)~ < (AB)~ < Var(B) € 4. Therefore, by
theorem 3.20, M is a local martingale, hence, X — X is a local martingale.

Now let (3) hold. Then
M > (Yy — Xo) + B.

Let {S,} be a localizing sequence for B as an element of #oc, T, := Sp A
0¢y,—xo<—n}- It is clear that {7, } is a localizing sequence. On the set {Y — X <
—n}, we have T,, = 0 and M Tn = 0, and, on its complement, T, = S, and M~ <
(Yo — Xo)~ 4+ B~ < n+ Var (B). It follows that { M~ }* € o} . By lemma 3.8 and
theorem 3.20, M is a local martingale, hence, X — X is a local martingale. d



Appendix

A.1. Theorems on monotone classes

Theorems on monotone classes are a widespread technical tool in stochastic
analysis. Here is the scheme of how these theorems are applied. Let a measurable
space (§2,.%#) be given. Suppose that we want to check some property for all
elements of the o-algebra .%. In other words, if we denote by Z the collection of all

subsets of €2, having the property we are interested in, then our goal is to establish the
inclusion

22 F. [A.1]
Next, we can efficiently check this property on a subclass € of the o-algebra .%:
€ C 9. [A.2]
Moreover, the class % is wide enough — the smallest o-algebra it generates is .7 :
F =o{¢}. [A.3]
Two theorems given below (on monotone classes and on 7-A-systems) provide
sufficient additional conditions on the sets % and 2, that allow us to deduce [A.1]
from [A.2] and [A.3]. Two extreme cases of such assumptions are trivial:
— % is a o-algebra, no assumptions on Z;
— 9 is a g-algebra, no assumptions on .

The first case is of no interest: it means that ¥ = .%, i.e. we can check directly the
property of interest for all elements of the o-algebra .% . The second case is a standard
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tool. For example, it is used in the reasoning that allows us to conclude that a mapping
T from (', .7') to (2, F) is measurable if T~1(A) € .Z', where A runs over a class
% of subsets of (), satisfying [A.3].

DEFINITION A.1.—

1) A collection Z of subsets of €2 is called a monotone class, if, for any sequence
A, € 9,n=1,2,...,suchthat A, T Aor A, | A, we have A € 2.

2) A collection € of subsets of € is called a mw-system, if it is stable under finite
intersections: if A, B € €,then AN B € €.

3) A collection Z of subsets of (2 is called a A-system, if (1) 2 € 2; (2) it follows
from A, B € P and A C Bthat B\A € 2;(3)itfollows from A, € Z,n=1,2,...,
and A, 1 A, that A € 9.

THEOREM A.1 (on monotone classes).— Let 4 be an algebra, Z a monotone class,
and [A.2] and [A.3] are valid. Then [A.1] holds.

THEOREM A.2 (on m-A-systems).— Let € be a m-system, & a A-system, and [A.2]
and [A.3] hold. Then we have [A.1].

There are several versions of the monotone class theorem for functions. We use
the following most widespread version of this theorem in the book.

THEOREM A.3.— Let JZ be a linear space of real-valued functions with finite values
(respectively real-valued bounded functions) on a set £2. Assume also that .7 contains
constant functions and has the following property: for any increasing sequence { f, }
of nonnegative functions from J#, the function f = lim,, f,, belongs to JZ if it is
finite (respectively bounded). Under these assumptions, if 4" is a subset of .7, which
is closed under multiplication, the space .7 contains all functions with finite values
(respectively bounded functions) that are measurable with respect to the o-algebra
o (%) generated by functions from %

EXERCISE A.l.—Deduce theorem A.3 from theorem A.2 under an additional
assumption that all functions in € are indicator functions, i.e. take values 0 and 1.

As mentioned above, theorem A.3 contained the additional assumption that ¢’
is closed under the uniform convergence. In fact, this assumption follows from other
assumptions of the theorem.

In the application of this result, similarly, we take ¢ as the class of all functions
having the property we are interested in, while € is a collection of functions for which
the property of interest can be directly verified.
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A.2. Uniform integrability

Let (£n)aca be a family of integrable random variables on a probability space
(Q,.7,P).

DEFINITION A.2.— A family ({,)aca of integrable random variables is called
uniformly integrable if

lim sup/ |€a| AP = 0.
cTrocaed Jijea|>c}

It is clear from the definition that the uniform integrability of a family of random
variables is, in fact, a property of their one-dimensional (1D) distributions. Thus,
generally speaking, the uniform integrability property may refer to the case where
random variables are given on different probability spaces.

A family consisting of a single integrable random variable is uniformly integrable
because of the absolute continuity of the Lebesgue integral. Therefore, if each &,
satisfies |, | < 1), where En < oo, then a family (£, )ac4 i uniformly integrable.

THEOREM A.4.— A family (£, )qc 4 of random variables is uniformly integrable if and
only if

sup E|&,| < o0
a€cA
and, for every £ > 0, there is § > 0 such that B € % and P(B) < § imply

/ |€a|dP < e forall o € A.
B

Recall that the convex hull of a set X in a linear space consists of elements x
that can be represented in the form x = Z?zl Bix;, where n is a natural number,
Bi, ..., B, are nonnegative numbers, > ., 3; = 1,and z1, ..., z, € X. The convex
hull of X is denoted sometimes by conv X.

THEOREM A.5.—

1) The closure in L'(P) of the convex hull of a uniformly integrable family of
random variables is uniformly integrable.

2) If (§a)aca and (ng)ge B are uniformly integrable families of random variables,
then the family {£, + ng: @ € A, 8 € B} is uniformly integrable.

THEOREM A.6 (Vallée-Poussin criterion).— Let (£4)aca be a family of random
variables. The following statements are equivalent:
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1) the family (£, )qc4 is uniformly integrable;

2) there is a nonnegative increasing function ® on R such that

o
lim (z) =00 and sup E®(|&,]) < 0.
tf4oo X a€cA

Moreover, the function ® can be taken convex.

The Vallée—Poussin criterion with ®(z) = 2 says that every bounded subset of
L?(P), where p > 1, is uniformly integrable. This is not true for p = 1.

EXERCISE A.2.— Construct a sequence {&,} of random variables such that
sup,, E|¢,,| < oo, but which is not uniformly integrable.

The following proposition is often used in this book.

PROPOSITION A.l.—Let (Z,)aca be an arbitrary family of sub-o-algebras of a
o-algebra .#, and E[§| < oo. Put &, = E(£|.%#,). Then the family ({,)aca is
uniformly integrable.

EXERCISE A.3.— Prove proposition A.1 using: (1) definition A.2; or (2) the Vallée—
Poussin criterion.

The role of the uniform integrability can be seen from the following theorem.

THEOREM A.7.— Let {&,} be a sequence of integrable random variables, and let £ be
a random variable. The following statements are equivalent:

1) the sequence {&, } converges to £ in probability and is uniformly integrable;

2) the random variable ¢ is integrable and the sequence {¢,} converges to & in
Ll(P)7 i'e°’ E|§n - €| — O as n — oQ.

In particular, the uniform integrability is sufficient for passing to the limit under
the expectation sign in sequences, converging in probability (or a.s.). For sequences
of nonnegative random variables, this condition is also necessary.

COROLLARY A.l.— Assume that a sequence {£,,} of nonnegative integrable random
variables converges in probability to a random variable £ and

lim E¢, = E€ < 0.
n—oo

Then the sequence {, } is uniformly integrable and converges to & in L!(P).
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PROOF.— We have

E|€n - §| = E(gn - f) + 2E(§ - 67l)+'

The first term on the right converges to 0 by the assumption. Now note that random
variables (£ — &, )T are nonnegative, converge to 0 in probability and are majorized by
the integrable random variable £. Therefore, by the dominated convergence theorem,
their expectations converge to 0. Thus, E|¢,, — | — 0. The uniform integrability of
{&,} follows from implication (2)=-(1) in theorem A.7. o

A.3. Conditional expectation

In this book, we often deal with conditional expectations of random variables
which may not be integrable. Working with conditional expectations of such random
variables needs some accuracy because they may not be defined or take infinite
values. Proposition A.2 allows us to reduce the case where conditional expectations
are defined and take only finite values to the case of integrable random variables.

Let a probability space (2,.%,P) and a sub-c-algebra 4 C .# be given. Recall
how the conditional expectation of a random variable ¢ with respect to the o-algebra

4 is defined, see [SHI 96] Chapter I1, S 7.

First, let £ > 0. Then the conditional expectation of £ with respect to ¢ is a random
variable with values in [0, +00], denoted by E(£|¥), such that E(£]|¥) is ¢4-measurable
and, for every B € ¥4,

/ cdp = / E(¢[4) dP. [A4]
B B

The existence of conditional expectation follows from the Radon-Nikodym
theorem, and it is defined uniquely up to sets of P-measure zero.

The conditional expectation E(£]|%¥) of an arbitrary random variable £ with respect
to ¢ is considered to be defined if, P-a.s.,

min (E(§7|9),E(£7|9)) < oo,
and it is given by the formula
E(l¥) ==E(£T9) —E(¢™19),

where, on the set {E((T|¢) = E(£7|¥9) = +oo} of zero measure, the expression
E(¢T|9) — E(67|9) is defined arbitrarily (keeping ¢-measurability).
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PROPOSITION A.2.—Let £ be a random variable. The following statements are
equivalent:

1) E(¢]|¥) is defined and is finite P-a.s.;
2) E(|¢]19) < oo P-as.;

3) there exists an increasing sequence of sets By C --- C B, C ... such that
B,, € ¥ for every n, P(U, B,,) = 1 and E|{|1, < oo for every n.

If (3) holds, then
E(¢|9)1p, =E(¢lp,|¢9) P-as. [A.5]

Statement (3) means that the equality [A.5] allows us to define E(£]|¥) via the
conditional expectations E({1p, |¥) of integrable random variables {1 g, .

PROOF.— Implication (1)=-(2) follows from the definition of the conditional

expectation and its additivity for nonnegative random variables, which is quite
elementary. If (2) holds, then put

B, = {E(IE|19) < n}.

Then (3) holds for this sequence (B,,). In particular, the finiteness of E|§|1 5,
follows from the equality [A.4] applied to |¢| instead of ¢ and B,, instead of B.

Let (3) hold. First, assume that £ > 0. Put

Z (£1a,|¥

Note that

An = Bn\anla B() = .

nla, =E({1a,|¥9) P-as. [A.6]

Since 7 is ¥-measurable and, for any B € ¢,

/ndP—Z/ (€14,|9) dP_Z / E(¢1a,|9)dP

n=lpa,

:i / f]lAndP:/gdP,

n=lgAa, B
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we have n = E(£]¥). In view of [A.6], (1) and [A.5] hold.

Now let £ be an arbitrary random variable. Then (3) holds for £ and £~. As we
have proved, (1) and [A.5] take place for £+ and £, hence the same is true for . O

A.4. Functions of bounded variation

Here we collect a few results concerning functions of bounded variation that are
used in the book. Their proofs can be found in many textbooks on analysis or
probability theory. Most of the statements are easy to prove.

Let a function f: R, — R be given. Define the variation of f on an interval [0, ¢],
te R+, by

vars(t) = supz |f(zr) = f(zp-1)l,
k=1

where the supremum is taken over all n and over all partitions 0 = 29 < 1 < -+ <
X, = tof [0,¢].

var s (t) takes values in [0, +00] and is nondecreasing in .

If f is right-continuous at ¢ and its variation is finite on [0, ¢ + £] for some £ > 0,
then vary is right-continuous at ¢.

If f is right-continuous everywhere on [0, ¢), then its variation can be computed
by the formula

on

varg(t) = lim_ S O IfRE27) = f((k =127, [A.7]
k=1

Let a function f: Ry — R be right-continuous everywhere on R, f(0) = 0, and
let var ;(t) be finite for all t € R.. Put

vary (t) + f(t)

vary (1) — f(1)
210, .

h(t) := 5

g(t) :== [A.8]

The functions ¢ and & start from 0, are right-continuous and increasing (in the
sense that s < ¢ implies g(s) < g(¢) and similarly for &), and

f=9g—nh, vary = g+ h.
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The functions g and & are determined by these properties in a unique way. Thus,
f can be represented as the difference of two right-continuous functions starting from
0; in particular, there exists a finite limit limgyy, f(s) at every point ¢ > 0.

The converse is also true: the difference of two increasing functions has a finite
variation on any finite interval [0, ¢].

A Lebesgue—Stieltjes measure on (R, Z(R)) is defined as a measure m on this
space such that m(I) < oo for every bounded interval I. The formula

m((0,t]) = f(t) [A.9]

provides a one-to-one correspondence between Lebesgue—Stieltjes measures
vanishing on (—oo, 0] and increasing right-continuous functions f: R, — R with
f(0) = 0. Denote by m the Lebesgue-Stieltjes measure corresponding to f. For a
measurable function H: Ry — Rand ¢ € [0, +00], the Lebesgue—Stieltjes integral

/ H(s)df (s)
0

is understood as the Lebesgue integral

H{(s)my(ds);
(0.1

here, if t = +o00, the interval (0, ¢] is understood as (0, +00).

Now let a function f: R — R be right-continuous at all points of R, f(0) =0,
and let var(t) be finite for all t € R,. Define functions ¢ and h by relations [A.8],
then mg4 + my, is the Lebesgue—Stieltjes measure corresponding to vary. By Radon—
Nkodym theorem, there is a measurable function H : R — [0, 1] such that, for every
te Ry,

t

olt) = [ H(s) dvay (), / ) dvar ()
0

0

then

— 1) dvars(s).

o\
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It follows from the previous formula, clearly, that

t

vary(t) </|2H(s)—1\dvarf(s),
0

hence (mgy + mp)({s: 0 < H(s) < 1}) = 0. In other words, there are sets £, and
E_ from B(R;)suchthat EL NE_ =@, E;, UE_ =Ry iand

t t

g(t) :/1E+(s)dvarf(s), h(t):/]lE_(s)dvarf(s). [A.10]

0 0
This fact can also be obtained from the Hahn decomposition for a signed measure.

Let a function f: Ry — R be right-continuous at all points of Ry, f(0) = 0,
vars(t) be finite for all t € Ry, and let H: R4 — R be a measurable function. If

/ |H(s)|dvarg(s) < oo
0

for some ¢t € R, then we define the integral

j H(s)df(s)
by
/tH(S) df (s) == /tH(S> dg(s) —jH(S) dh(s),

where the functions g and h are taken from [A.8]. If fot |H (s)|dvars(s) < oo for all
t € R4, then the function

t
t [ ) dr)
0
starts from zero, is right-continuous, and its variation on [0, ¢] is equal to

1) dvars (s
0

forevery t € R;.
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Let functions f, g: Ry — R be right-continuous at all points of R, have finite
variation on [0, ¢] for every t € Ry, f(0) = ¢(0) = 0. If f and g are increasing
functions, we write df < dg if the corresponding Lebesgue—Stieltjes measures are
absolutely continuous: my < my. In the general case, df < dg means that d vary <
dvary.
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Chapter 1

General references: [DEL 72, DEL 78, ELL 82, HE 92, JAC 03, LIP 89, MED 07,
MET 82, YEH 95].

Section 1.1. Concerning continuity of the stochastic basis generated by Lévy
processes or, more generally, by a process with independent increments
(Remark 1.1), see [KRU 10].

Section 1.3. For the proof of Theorem 1.7 see, e.g., [DEL 72] or [DEL 78].
Proposition 1.12 is taken from [HE 92].

Section 1.4. The proof of Theorem 1.12 can be found in [DEL 78].
Chapter 2

General references: [BIC 02, DEL 72, DEL 82, ELL 82, HE 92, JAC 79, JAC 03,
LIP 89, MED 07, MET 82, MEY 76, PRO 05, YEH 95].

Section 2.1 The proofs of theorems 2.1, 2.2, 2.3, 2.5 can be found in many sources,
in particular, in [DEL 82, ELL 82, HE 92, KAL 02, MED 07, YEH 95].

Section 2.7. The property [2.52] of the quadratic variation is proved, e.g., in
[DEL 82, HE 92, JAC 03, MED 07, MEY 76, PRO 05, YEH 95].
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Section 2.8. For the proofs of the Burkholder—Davis—Gundy inequality see, e.g.,
[DEL 82, HE 92, LIP 89].

Chapter 3

General references: [BIC 02, DEL 82, ELL 82, HE 92, JAC 79, JAC 03, LIP 89,
MED 07, MET 82, MEY 76, PRO 05, YEH 95].

Section 3.2. For the proofs of 1td’s formula see, e.g., [DEL 82, HE 92, MED 07,
MEY 76, PRO 05, YEH 95].

Section 3.5. The form of the Ansel-Stricker theorem presented in theorem 3.21
seems to be new.

Appendix

Section A.1. Proofs of Theorems A.1-A.3 can be found, e.g., in [DEL 78, SHA 88,
SHI 96, KAL 02].

Section A.2. For more details, see, e.g., [DEL 78, SHI 96, KAL 02].

Section A.4. See, e.g. [KAL 02].
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stopping time, 30
adapted stochastic process, 12
angle bracket, 100
Ansel-Stricker theorem, 166
Burkholder—Davis—Gundy inequality, 118
cadlag process, 3
canonical
decomposition of a special
semimartingale, 136
stochastic process, 2
class
(D), 46
(DL), 46
closed
submartingale, 44
supermartingale, 44
compensator, 79
complete stochastic basis, 2
conditional expectation, 173
continuous
local martingale, 113
martingale component, 102
martingale component of a
semimartingale, 140

D,E,F

début of a set, 17
Doléans
exponential, 149
measure, 69
Doob-Meyer decomposition, 93, 97

dual
optional projection, 80
predictable projection, 79
embracing sequence of predictable
stopping times, 30
Emery’s example, 86
evanescent random set, 4
exhausting sequence of stopping times, 20
filtration, 1
foretellable stopping time, 27
foretelling sequence of stopping times, 27
formula of integration by parts, 147

G, LK,L

gluing procedure, 84
graph of a stopping time, 16
Gundy decomposition, 89
increasing process, 62
indistinguishable stochastic processes, 4
integrable increasing process, 68
increasing process in the
wide sense, 69
1t6’s formula, 144
Kunita—Watanabe inequalities, 110
local
martingale, 53
supermartingale, 56
localizing sequence of stopping times, 52
locally
bounded process, 67
integrable increasing process, 83
square-integrable martingale, 112

M,N, O

martingale, 41
measurable stochastic process, 11
modification of a stochastic process, 4
monotone class, 170

theorem, 170
mutual quadratic characteristic, 112
natural process, 74
optional

o-algebra, 14

projection, 36

section theorem, 27

stochastic process, 14
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P,Q

predictable
o-algebra, 15
projection, 36
section theorem, 29
stochastic process, 15
stopping time, 22

process with
finite variation, 62
independent increments, 42

independent increments on a stochastic

basis, 42
integrable variation, 68
integrable variation in the
wide sense, 69
locally integrable variation, 83
progressively measurable stochastic
process, 12
purely discontinuous
local martingale, 113
martingale component, 102
process with finite variation, 64
square-integrable martingale, 102
quadratic
bracket, 109
characteristic, 99
characteristic of a locally
square-integrable martingale, 112
quadratic covariation of
local martingales, 116
semimartingales, 140
square-integrable martingales, 108
quadratic variation of a
local martingale, 116
semimartingale, 140
square-integrable martingale, 108

R,S

random set, 3
restriction of a stopping time, 8
right-continuous
process with left-hand limits, 3
stochastic basis, 2

section theorem, 26
semimartingale, 136
special semimartingale, 136
square-integrable martingale, 98
stable subspace, 101
stochastic
basis, 1
exponential, 149
intervals, 15
logarithm, 154
process, 3
stochastic integral with respect to
a local martingale, 131
a semimartingale, 141, 156
locally square-integrable martingales,
129
square-integrable martingale, 124
stopped stochastic process, 17
stopping time, 5
strongly orthogonal square-integrable
martingales, 101
submartingale, 41
supermartingale, 41

T,U

theorem on 7-\A-systems, 170
totally inaccessible
part of a stopping time, 31
stopping time, 30
trajectory of a stochastic process, 3
uniform integrability, 171
uniformly integrable stochastic process, 46
usual conditions, 2

V,Y

Vallée-Poussin criterion, 171
variation of a function, 175
vector stochastic integral, 127
version of a stochastic process, 4
Yor’s formula, 154



